
F
or many years, control units in automobiles have been 
taking over more and more compute-intensive tasks - and 
no end to this trend is in sight. With the increasing 
complexity, the probability of errors goes up while the 
efficiency of their elimination goes down [1]. The 

constantly increasing computing load makes the use of 
multi-core processors inevitable for many applications. 
However, the transition from sequential to parallel process-
ing can introduce errors that are very difficult to reproduce, 
particularly if the code was never intended for parallel execu-
tion. 
 Without doubt, liability reasons demand special diligence 
in software development and testing from the automotive 
industry. However, testing and debugging environments 
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only make sense if they help to assign root causes to 
observed error symptoms. Observability is, therefore, key. 
In contrast to traditional single-core systems, modern 
multi-core architectures present us with special challenges. 
The more integrated such a system is, the more difficult it 
is to understand internal processes. This is exactly where 
the technology presented in this article provides support.

Proven and Novel Tools

 Software instrumentation is widely used and estab-
lished for monitoring internal processes. Automatically 
added code logs the execution of the program, for exam-

ple, to measure the execution times of code blocks or to 
determine the coverage of tests. However, instrumentation 
requires memory space and impacts the temporal behavior of 
program execution. 
 Fortunately, there is an alternative: Almost all modern 
processors feature an embedded trace unit (e.g. Intel Proces-
sor Trace [2]), which communicates via a designated (e.g. 
AGBT) or a standard interface (e.g. USB DCI, PCIe). This unit 
provides information about the executed program flow 
without affecting it. Depending on the architecture and trace 
configuration, the temporal execution behavior and memory 
data accesses can also be reconstructed. In addition, many 
trace units enable lightweight hardware-supported instru-
mentation, which is thus acceptable in the release code, (e.g. 
PTWrite, MIPI STP [4]) as well as the tracing of peripheral 
units (memory controllers, communication units).
 The embedded trace solutions commonly used today 
store the broadband trace data (several Gbit/s) in temporary 
buffer memory. At the end of a test run, the program flow is 
reconstructed on a PC, and the structural coverage is calculat-
ed. The limits of this procedure are the observation time 
bounded by the size of the buffer memory and the additional 
computing time required for the offline reconstruction of the 

program flow.  
 The live analysis is a further enhancement beyond the 
established offline analysis of recorded trace data. It requires 
two technical challenges to be mastered. On the one hand, 
the highly compressed trace data stream must be pre-pro-
cessed and the control flow of the CPU(s) must be recon-
structed. This computation must work for fast CPUs (>1 GHz) 
and for different operating systems. On the other hand, the 
generated event stream must be processed as, for example, 
by recording jump information to facilitate the calculation of 
the structural test coverage or by dynamically monitoring a 
large number of properties using data flow processors that 
can be configured in a high-level language.

Use Case A: Code Coverage

 The standards for the development of safety-critical 
systems (e.g. [4]) define requirements for the test process, 
the test techniques to be applied and the verification of the 
completeness of these tests by measuring the structural 
coverage. For the latter, it must be shown, depending on the 
criticality of the application, that all instructions (Statement 
Coverage), all jumps (Branch Coverage) or all relevant combi-
nations of conditions for branches (MC/DC) have been 
invoked during the tests. In general, the standards leave it 
largely open, on which test level (system test, integration 
test, module test) the structural coverage is validated. Ideally, 
the requirements specification is included in the test so that 
the structural coverage can also make a statement about the 
quality of the requirements.
 As discussed in detail in the CAST-17 position paper [5], 
the measurement of the structural coverage on object code 
level provides different information than a measurement on 
source code level. Leveraging the debug information generat-
ed by the compiler, the measured object code coverage can 
be mapped to the corresponding source code coverage, as 
illustrated in Figure 2.
 This analysis of the debug information can now be 
combined with the live analysis: Without any instrumentation 
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(and thus without changing the dynamic behavior of the 
target system), the test coverage for the target system is 
determined. An example of such an analysis system is the 
CEDARtools® system shown in Figure 1, which performs live 
analysis using an FPGA.
 Measuring structural test coverage during integration and 
system testing is able to identify gaps in these tests, and 
replace structural unit tests.

Use Case B: Dynamic Analysis

 Static analysis is an essential element in the development 
process. Due to missing or oversimplified models, this 
method is increasingly reaching its limits rendering the 
complementary dynamic analysis of embedded systems 
more and more important. Also, this approach can be imple-
mented using the hardware outlined above. 
 For this purpose, selected instruction addresses are 
marked during the continuous reconstruction of the control 
flow. At the execution of these instructions, specific events 
are automatically injected into the emitted event stream, 
which can then be analyzed online for specific properties. The 
used event processing units can be configured in a high-level 
language (www.tessla.io [6]). A large number of temporal 
properties (e.g. defined by AUTOSAR TIMEX [7] or Amalthea) 
can be monitored in parallel. The FPGA only requires a param-
eterization of the event processing units, an individual synthe-
sis of logic structures is not necessary. Thus, a change of the 
high-level language property description can be applied to a 
trace data stream within seconds. An example is shown in 
Figure 3.
 Dynamic analysis is also a powerful tool for debugging, 
especially for complex non-deterministic error patterns. 
Depending on the probability of occurrence and the area of 
application, the search for one of these defects can quickly 
lead to six-digit costs [8].

Design Considerations 

 Already in the specifications, suitable precautions should 
be defined to achieve comprehensive observability of the 
Electronical Control Unit (ECU) both during the tests and after 
the release. The trace interface should be available in specific 
ECU versions during the test phase as well as in production 
vehicles. In addition, for tests on pre-production and produc-
tion vehicles, the interference-free transmission of trace data 
from the ECU to the analyzer (which is usually located inside 
the vehicle) must be ensured.

Summary

 The continuously increasing number of post-release 
defects with increasing complexity requires the application of 
new test methods. These include the measurement of the 
structural test coverage and the automated execution of 
runtime analyses in the fully integrated system. Thanks to a 
new technology, this analysis is now possible without 
software instrumentation and thus without influencing the 
runtime behavior. 
 In addition, it allows the cause of complex error patterns 
to be efficiently analyzed even after a system has been 
released. To be able to use this technological capability, 
wide-bandwidth access to the trace data output by a proces-
sor is required.W (oe)
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Figure 2: Object code coverage and its mapping to source code level
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Use Case: Dynamic Software Architecture
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1 To simplify the design process, the LET concept 
abstracts from the physical execution time on a 
given platform by only looking at the times of read 
and write accesses. There is no consideration of the 
actual execution time as long as deadlines are met.
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With CEDARtools®, Accemic Technologies have developed a 
tool for analyzing complex embedded systems. It solves the 
problem of the limited size of trace buffers. Major automotive 
and aerospace OEMs and Tier1s are already evaluating and 
using the system.
Instead of storing the trace data and later analyzing it offline, 
the multi-Gbit data stream is analyzed on-the-fly using sophisti-
cated hardware. The following challenges have to be met: 
W Live reconstruction of the control and data flow of one or 
more CPUs using trace data - a rather demanding task, since 
the trace data is output by the processor in a highly 
compressed form
W highly configurable live analysis of the generated event 
stream (e.g. instruction hits, data accesses, task changes, up to 
~100M events/s), simultaneous investigation of a multitude of 
complex properties (minimum and maximum runtimes in 
effect chains, statistics, sequences, checking of value ranges 
etc.)
W continuous live measurement of structural test coverage.
The new paradigm is to no longer collect enormous amounts 
of raw trace data over long periods of time for their later 
evaluation in a time-consuming process but to analyze the 
trace data on-the-fly using predefined high-level language 
properties. This can be done over minutes, hours and days. 
However, there is no need to dispense the raw data: Using 
complex triggers, it is possible to define exactly which raw data 
and events are relevant for the analysis and stored in an 
existing trace buffer (4 GByte). 
Supported processors*:
- Arm® Cortex®-A, -R, -M
- Infineon Aurix™ TC2xx, TC3xx
- Power Architecture® (including NXP QorIQ® P-/T-Series)
- Intel® Atom® (among others E39x0)
Supported Trace Interfaces*:
- High-speed serial interfaces (Aurora): NEXUS, HSSTP, AGBT
- Standard interfaces: PCIe, USB
- Parallel interfaces (Mictor, NEXUS)

* partly still under development
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especially for complex non-deterministic error patterns. 
Depending on the probability of occurrence and the area of 
application, the search for one of these defects can quickly 
lead to six-digit costs [8].

Design Considerations 

 Already in the specifications, suitable precautions should 
be defined to achieve comprehensive observability of the 
Electronical Control Unit (ECU) both during the tests and after 
the release. The trace interface should be available in specific 
ECU versions during the test phase as well as in production 
vehicles. In addition, for tests on pre-production and produc-
tion vehicles, the interference-free transmission of trace data 
from the ECU to the analyzer (which is usually located inside 
the vehicle) must be ensured.

Summary

 The continuously increasing number of post-release 
defects with increasing complexity requires the application of 
new test methods. These include the measurement of the 
structural test coverage and the automated execution of 
runtime analyses in the fully integrated system. Thanks to a 
new technology, this analysis is now possible without 
software instrumentation and thus without influencing the 
runtime behavior. 
 In addition, it allows the cause of complex error patterns 
to be efficiently analyzed even after a system has been 
released. To be able to use this technological capability, 
wide-bandwidth access to the trace data output by a proces-
sor is required.W (oe)
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