
F
or many years, control units in automobiles have been
taking over more and more compute-intensive tasks - and
no end to this trend is in sight. With the increasing
complexity, the probability of errors goes up while the
efficiency of their elimination goes down [1]. The

constantly increasing computing load makes the use of
multi-core processors inevitable for many applications.
However, the transition from sequential to parallel process-
ing can introduce errors that are very difficult to reproduce,
particularly if the code was never intended for parallel execu-
tion.
 Without doubt, liability reasons demand special diligence
in software development and testing from the automotive
industry. However, testing and debugging environments

DEVELOPMENT TOOLS

Tracing Embedded
Multi-Core Systems
While multi-core processors offer more processing power than single-core archi-
tectures, they are more likely to produce hard-to-detect and concurrency-related
errors. This article presents a new technology that enables the measurement of
the timing behavior of programs on multi-core architectures, the measurement of
the coverage achieved by test running on the target system, and the analysis of
complex errors.

Figure 1: CEDARtools®

only make sense if they help to assign root causes to
observed error symptoms. Observability is, therefore, key.
In contrast to traditional single-core systems, modern
multi-core architectures present us with special challenges.
The more integrated such a system is, the more difficult it
is to understand internal processes. This is exactly where
the technology presented in this article provides support.

Proven and Novel Tools

 Software instrumentation is widely used and estab-
lished for monitoring internal processes. Automatically
added code logs the execution of the program, for exam-

ple, to measure the execution times of code blocks or to
determine the coverage of tests. However, instrumentation
requires memory space and impacts the temporal behavior of
program execution.
 Fortunately, there is an alternative: Almost all modern
processors feature an embedded trace unit (e.g. Intel Proces-
sor Trace [2]), which communicates via a designated (e.g.
AGBT) or a standard interface (e.g. USB DCI, PCIe). This unit
provides information about the executed program flow
without affecting it. Depending on the architecture and trace
configuration, the temporal execution behavior and memory
data accesses can also be reconstructed. In addition, many
trace units enable lightweight hardware-supported instru-
mentation, which is thus acceptable in the release code, (e.g.
PTWrite, MIPI STP [4]) as well as the tracing of peripheral
units (memory controllers, communication units).
 The embedded trace solutions commonly used today
store the broadband trace data (several Gbit/s) in temporary
buffer memory. At the end of a test run, the program flow is
reconstructed on a PC, and the structural coverage is calculat-
ed. The limits of this procedure are the observation time
bounded by the size of the buffer memory and the additional
computing time required for the offline reconstruction of the

program flow.
 The live analysis is a further enhancement beyond the
established offline analysis of recorded trace data. It requires
two technical challenges to be mastered. On the one hand,
the highly compressed trace data stream must be pre-pro-
cessed and the control flow of the CPU(s) must be recon-
structed. This computation must work for fast CPUs (>1 GHz)
and for different operating systems. On the other hand, the
generated event stream must be processed as, for example,
by recording jump information to facilitate the calculation of
the structural test coverage or by dynamically monitoring a
large number of properties using data flow processors that
can be configured in a high-level language.

Use Case A: Code Coverage

 The standards for the development of safety-critical
systems (e.g. [4]) define requirements for the test process,
the test techniques to be applied and the verification of the
completeness of these tests by measuring the structural
coverage. For the latter, it must be shown, depending on the
criticality of the application, that all instructions (Statement
Coverage), all jumps (Branch Coverage) or all relevant combi-
nations of conditions for branches (MC/DC) have been
invoked during the tests. In general, the standards leave it
largely open, on which test level (system test, integration
test, module test) the structural coverage is validated. Ideally,
the requirements specification is included in the test so that
the structural coverage can also make a statement about the
quality of the requirements.
 As discussed in detail in the CAST-17 position paper [5],
the measurement of the structural coverage on object code
level provides different information than a measurement on
source code level. Leveraging the debug information generat-
ed by the compiler, the measured object code coverage can
be mapped to the corresponding source code coverage, as
illustrated in Figure 2.
 This analysis of the debug information can now be
combined with the live analysis: Without any instrumentation

Translated article “Tracing von eingebetteten Multicore-Systemen “ HANSER automotive 3 / 2020

(and thus without changing the dynamic behavior of the
target system), the test coverage for the target system is
determined. An example of such an analysis system is the
CEDARtools® system shown in Figure 1, which performs live
analysis using an FPGA.
 Measuring structural test coverage during integration and
system testing is able to identify gaps in these tests, and
replace structural unit tests.

Use Case B: Dynamic Analysis

 Static analysis is an essential element in the development
process. Due to missing or oversimplified models, this
method is increasingly reaching its limits rendering the
complementary dynamic analysis of embedded systems
more and more important. Also, this approach can be imple-
mented using the hardware outlined above.
 For this purpose, selected instruction addresses are
marked during the continuous reconstruction of the control
flow. At the execution of these instructions, specific events
are automatically injected into the emitted event stream,
which can then be analyzed online for specific properties. The
used event processing units can be configured in a high-level
language (www.tessla.io [6]). A large number of temporal
properties (e.g. defined by AUTOSAR TIMEX [7] or Amalthea)
can be monitored in parallel. The FPGA only requires a param-
eterization of the event processing units, an individual synthe-
sis of logic structures is not necessary. Thus, a change of the
high-level language property description can be applied to a
trace data stream within seconds. An example is shown in
Figure 3.
 Dynamic analysis is also a powerful tool for debugging,
especially for complex non-deterministic error patterns.
Depending on the probability of occurrence and the area of
application, the search for one of these defects can quickly
lead to six-digit costs [8].

Design Considerations

 Already in the specifications, suitable precautions should
be defined to achieve comprehensive observability of the
Electronical Control Unit (ECU) both during the tests and after
the release. The trace interface should be available in specific
ECU versions during the test phase as well as in production
vehicles. In addition, for tests on pre-production and produc-
tion vehicles, the interference-free transmission of trace data
from the ECU to the analyzer (which is usually located inside
the vehicle) must be ensured.

Summary

 The continuously increasing number of post-release
defects with increasing complexity requires the application of
new test methods. These include the measurement of the
structural test coverage and the automated execution of
runtime analyses in the fully integrated system. Thanks to a
new technology, this analysis is now possible without
software instrumentation and thus without influencing the
runtime behavior.
 In addition, it allows the cause of complex error patterns
to be efficiently analyzed even after a system has been
released. To be able to use this technological capability,
wide-bandwidth access to the trace data output by a proces-
sor is required.W (oe)

or many years, control units in automobiles have been
taking over more and more compute-intensive tasks - and
no end to this trend is in sight. With the increasing
complexity, the probability of errors goes up while the
efficiency of their elimination goes down [1]. The

constantly increasing computing load makes the use of
multi-core processors inevitable for many applications.
However, the transition from sequential to parallel process-
ing can introduce errors that are very difficult to reproduce,
particularly if the code was never intended for parallel execu-
tion.
 Without doubt, liability reasons demand special diligence
in software development and testing from the automotive
industry. However, testing and debugging environments

only make sense if they help to assign root causes to
observed error symptoms. Observability is, therefore, key.
In contrast to traditional single-core systems, modern
multi-core architectures present us with special challenges.
The more integrated such a system is, the more difficult it
is to understand internal processes. This is exactly where
the technology presented in this article provides support.

Proven and Novel Tools

 Software instrumentation is widely used and estab-
lished for monitoring internal processes. Automatically
added code logs the execution of the program, for exam-

Figure 2: Object code coverage and its mapping to source code level

INFO

Use Case: Dynamic Software Architecture

 The relevance of software in vehicles has been
increasing for several years and it is likely that this trend
will continue. Especially in highly automated driving,
many innovations are software-based [9] [10].
 In conjunction with equally increasing time-to-mar-
ket requirements, OEMs face a variety of challenges at
validating their systems. In addition to the increasing
complexity of software architectures, the integration of
legacy components as well as a combined scheduling
on multi-core platforms are particularly aggravating.
 The LET concept 1 (Logical Execution Time) [11]
provides a framework to meet these challenges.
However, it relies on one important prerequisite: It
must be ensured that each task is safely processed
within an assigned time window. Static analyses are
currently not providing sufficient precision. Thus,
measurement methods are employed additionally to
check whether deadlines are met. Measurement
approaches that do not require software instrumenta-
tion are exceedingly interesting in this context as they
measure the actual software status.

1 To simplify the design process, the LET concept
abstracts from the physical execution time on a
given platform by only looking at the times of read
and write accesses. There is no consideration of the
actual execution time as long as deadlines are met.

ple, to measure the execution times of code blocks or to
determine the coverage of tests. However, instrumentation
requires memory space and impacts the temporal behavior of
program execution.
 Fortunately, there is an alternative: Almost all modern
processors feature an embedded trace unit (e.g. Intel Proces-
sor Trace [2]), which communicates via a designated (e.g.
AGBT) or a standard interface (e.g. USB DCI, PCIe). This unit
provides information about the executed program flow
without affecting it. Depending on the architecture and trace
configuration, the temporal execution behavior and memory
data accesses can also be reconstructed. In addition, many
trace units enable lightweight hardware-supported instru-
mentation, which is thus acceptable in the release code, (e.g.
PTWrite, MIPI STP [4]) as well as the tracing of peripheral
units (memory controllers, communication units).
 The embedded trace solutions commonly used today
store the broadband trace data (several Gbit/s) in temporary
buffer memory. At the end of a test run, the program flow is
reconstructed on a PC, and the structural coverage is calculat-
ed. The limits of this procedure are the observation time
bounded by the size of the buffer memory and the additional
computing time required for the offline reconstruction of the

program flow.
 The live analysis is a further enhancement beyond the
established offline analysis of recorded trace data. It requires
two technical challenges to be mastered. On the one hand,
the highly compressed trace data stream must be pre-pro-
cessed and the control flow of the CPU(s) must be recon-
structed. This computation must work for fast CPUs (>1 GHz)
and for different operating systems. On the other hand, the
generated event stream must be processed as, for example,
by recording jump information to facilitate the calculation of
the structural test coverage or by dynamically monitoring a
large number of properties using data flow processors that
can be configured in a high-level language.

Use Case A: Code Coverage

 The standards for the development of safety-critical
systems (e.g. [4]) define requirements for the test process,
the test techniques to be applied and the verification of the
completeness of these tests by measuring the structural
coverage. For the latter, it must be shown, depending on the
criticality of the application, that all instructions (Statement
Coverage), all jumps (Branch Coverage) or all relevant combi-
nations of conditions for branches (MC/DC) have been
invoked during the tests. In general, the standards leave it
largely open, on which test level (system test, integration
test, module test) the structural coverage is validated. Ideally,
the requirements specification is included in the test so that
the structural coverage can also make a statement about the
quality of the requirements.
 As discussed in detail in the CAST-17 position paper [5],
the measurement of the structural coverage on object code
level provides different information than a measurement on
source code level. Leveraging the debug information generat-
ed by the compiler, the measured object code coverage can
be mapped to the corresponding source code coverage, as
illustrated in Figure 2.
 This analysis of the debug information can now be
combined with the live analysis: Without any instrumentation

(and thus without changing the dynamic behavior of the
target system), the test coverage for the target system is
determined. An example of such an analysis system is the
CEDARtools® system shown in Figure 1, which performs live
analysis using an FPGA.
 Measuring structural test coverage during integration and
system testing is able to identify gaps in these tests, and
replace structural unit tests.

Use Case B: Dynamic Analysis

 Static analysis is an essential element in the development
process. Due to missing or oversimplified models, this
method is increasingly reaching its limits rendering the
complementary dynamic analysis of embedded systems
more and more important. Also, this approach can be imple-
mented using the hardware outlined above.
 For this purpose, selected instruction addresses are
marked during the continuous reconstruction of the control
flow. At the execution of these instructions, specific events
are automatically injected into the emitted event stream,
which can then be analyzed online for specific properties. The
used event processing units can be configured in a high-level
language (www.tessla.io [6]). A large number of temporal
properties (e.g. defined by AUTOSAR TIMEX [7] or Amalthea)
can be monitored in parallel. The FPGA only requires a param-
eterization of the event processing units, an individual synthe-
sis of logic structures is not necessary. Thus, a change of the
high-level language property description can be applied to a
trace data stream within seconds. An example is shown in
Figure 3.
 Dynamic analysis is also a powerful tool for debugging,
especially for complex non-deterministic error patterns.
Depending on the probability of occurrence and the area of
application, the search for one of these defects can quickly
lead to six-digit costs [8].

Design Considerations

 Already in the specifications, suitable precautions should
be defined to achieve comprehensive observability of the
Electronical Control Unit (ECU) both during the tests and after
the release. The trace interface should be available in specific
ECU versions during the test phase as well as in production
vehicles. In addition, for tests on pre-production and produc-
tion vehicles, the interference-free transmission of trace data
from the ECU to the analyzer (which is usually located inside
the vehicle) must be ensured.

Summary

 The continuously increasing number of post-release
defects with increasing complexity requires the application of
new test methods. These include the measurement of the
structural test coverage and the automated execution of
runtime analyses in the fully integrated system. Thanks to a
new technology, this analysis is now possible without
software instrumentation and thus without influencing the
runtime behavior.
 In addition, it allows the cause of complex error patterns
to be efficiently analyzed even after a system has been
released. To be able to use this technological capability,
wide-bandwidth access to the trace data output by a proces-
sor is required.W (oe)

or many years, control units in automobiles have been
taking over more and more compute-intensive tasks - and
no end to this trend is in sight. With the increasing
complexity, the probability of errors goes up while the
efficiency of their elimination goes down [1]. The

constantly increasing computing load makes the use of
multi-core processors inevitable for many applications.
However, the transition from sequential to parallel process-
ing can introduce errors that are very difficult to reproduce,
particularly if the code was never intended for parallel execu-
tion.
 Without doubt, liability reasons demand special diligence
in software development and testing from the automotive
industry. However, testing and debugging environments

only make sense if they help to assign root causes to
observed error symptoms. Observability is, therefore, key.
In contrast to traditional single-core systems, modern
multi-core architectures present us with special challenges.
The more integrated such a system is, the more difficult it
is to understand internal processes. This is exactly where
the technology presented in this article provides support.

Proven and Novel Tools

 Software instrumentation is widely used and estab-
lished for monitoring internal processes. Automatically
added code logs the execution of the program, for exam-

ple, to measure the execution times of code blocks or to
determine the coverage of tests. However, instrumentation
requires memory space and impacts the temporal behavior of
program execution.
 Fortunately, there is an alternative: Almost all modern
processors feature an embedded trace unit (e.g. Intel Proces-
sor Trace [2]), which communicates via a designated (e.g.
AGBT) or a standard interface (e.g. USB DCI, PCIe). This unit
provides information about the executed program flow
without affecting it. Depending on the architecture and trace
configuration, the temporal execution behavior and memory
data accesses can also be reconstructed. In addition, many
trace units enable lightweight hardware-supported instru-
mentation, which is thus acceptable in the release code, (e.g.
PTWrite, MIPI STP [4]) as well as the tracing of peripheral
units (memory controllers, communication units).
 The embedded trace solutions commonly used today
store the broadband trace data (several Gbit/s) in temporary
buffer memory. At the end of a test run, the program flow is
reconstructed on a PC, and the structural coverage is calculat-
ed. The limits of this procedure are the observation time
bounded by the size of the buffer memory and the additional
computing time required for the offline reconstruction of the

program flow.
 The live analysis is a further enhancement beyond the
established offline analysis of recorded trace data. It requires
two technical challenges to be mastered. On the one hand,
the highly compressed trace data stream must be pre-pro-
cessed and the control flow of the CPU(s) must be recon-
structed. This computation must work for fast CPUs (>1 GHz)
and for different operating systems. On the other hand, the
generated event stream must be processed as, for example,
by recording jump information to facilitate the calculation of
the structural test coverage or by dynamically monitoring a
large number of properties using data flow processors that
can be configured in a high-level language.

Use Case A: Code Coverage

 The standards for the development of safety-critical
systems (e.g. [4]) define requirements for the test process,
the test techniques to be applied and the verification of the
completeness of these tests by measuring the structural
coverage. For the latter, it must be shown, depending on the
criticality of the application, that all instructions (Statement
Coverage), all jumps (Branch Coverage) or all relevant combi-
nations of conditions for branches (MC/DC) have been
invoked during the tests. In general, the standards leave it
largely open, on which test level (system test, integration
test, module test) the structural coverage is validated. Ideally,
the requirements specification is included in the test so that
the structural coverage can also make a statement about the
quality of the requirements.
 As discussed in detail in the CAST-17 position paper [5],
the measurement of the structural coverage on object code
level provides different information than a measurement on
source code level. Leveraging the debug information generat-
ed by the compiler, the measured object code coverage can
be mapped to the corresponding source code coverage, as
illustrated in Figure 2.
 This analysis of the debug information can now be
combined with the live analysis: Without any instrumentation

INFO
With CEDARtools®, Accemic Technologies have developed a
tool for analyzing complex embedded systems. It solves the
problem of the limited size of trace buffers. Major automotive
and aerospace OEMs and Tier1s are already evaluating and
using the system.
Instead of storing the trace data and later analyzing it offline,
the multi-Gbit data stream is analyzed on-the-fly using sophisti-
cated hardware. The following challenges have to be met:
W Live reconstruction of the control and data flow of one or
more CPUs using trace data - a rather demanding task, since
the trace data is output by the processor in a highly
compressed form
W highly configurable live analysis of the generated event
stream (e.g. instruction hits, data accesses, task changes, up to
~100M events/s), simultaneous investigation of a multitude of
complex properties (minimum and maximum runtimes in
effect chains, statistics, sequences, checking of value ranges
etc.)
W continuous live measurement of structural test coverage.
The new paradigm is to no longer collect enormous amounts
of raw trace data over long periods of time for their later
evaluation in a time-consuming process but to analyze the
trace data on-the-fly using predefined high-level language
properties. This can be done over minutes, hours and days.
However, there is no need to dispense the raw data: Using
complex triggers, it is possible to define exactly which raw data
and events are relevant for the analysis and stored in an
existing trace buffer (4 GByte).
Supported processors*:
- Arm® Cortex®-A, -R, -M
- Infineon Aurix™ TC2xx, TC3xx
- Power Architecture® (including NXP QorIQ® P-/T-Series)
- Intel® Atom® (among others E39x0)
Supported Trace Interfaces*:
- High-speed serial interfaces (Aurora): NEXUS, HSSTP, AGBT
- Standard interfaces: PCIe, USB
- Parallel interfaces (Mictor, NEXUS)

* partly still under development

Figure 3: Dynamic event
analysis with CEDARtools®

HIL

ECU
Processor

CEDARtools®
digital twintrace

data

Code coverage

Timing analysis

C code

Binary

C compiler

…
read_brake_sensor();
…
…
activate_brakes();
…

TeSSLa
compiler

debug
informa�on

analysis task

test specifica�onen

< 5ms

in read_brake_sensor : Events[Unit]
in activate_brakes : Events[Unit]

def latency : Events[Int] := calc_latency(read_brake_sensor, activate_brakes)

def test_passed : Events[Bool] := if (latency < 5ms) then true else false

test_passed

(and thus without changing the dynamic behavior of the
target system), the test coverage for the target system is
determined. An example of such an analysis system is the
CEDARtools® system shown in Figure 1, which performs live
analysis using an FPGA.
 Measuring structural test coverage during integration and
system testing is able to identify gaps in these tests, and
replace structural unit tests.

Use Case B: Dynamic Analysis

 Static analysis is an essential element in the development
process. Due to missing or oversimplified models, this
method is increasingly reaching its limits rendering the
complementary dynamic analysis of embedded systems
more and more important. Also, this approach can be imple-
mented using the hardware outlined above.
 For this purpose, selected instruction addresses are
marked during the continuous reconstruction of the control
flow. At the execution of these instructions, specific events
are automatically injected into the emitted event stream,
which can then be analyzed online for specific properties. The
used event processing units can be configured in a high-level
language (www.tessla.io [6]). A large number of temporal
properties (e.g. defined by AUTOSAR TIMEX [7] or Amalthea)
can be monitored in parallel. The FPGA only requires a param-
eterization of the event processing units, an individual synthe-
sis of logic structures is not necessary. Thus, a change of the
high-level language property description can be applied to a
trace data stream within seconds. An example is shown in
Figure 3.
 Dynamic analysis is also a powerful tool for debugging,
especially for complex non-deterministic error patterns.
Depending on the probability of occurrence and the area of
application, the search for one of these defects can quickly
lead to six-digit costs [8].

Design Considerations

 Already in the specifications, suitable precautions should
be defined to achieve comprehensive observability of the
Electronical Control Unit (ECU) both during the tests and after
the release. The trace interface should be available in specific
ECU versions during the test phase as well as in production
vehicles. In addition, for tests on pre-production and produc-
tion vehicles, the interference-free transmission of trace data
from the ECU to the analyzer (which is usually located inside
the vehicle) must be ensured.

Summary

 The continuously increasing number of post-release
defects with increasing complexity requires the application of
new test methods. These include the measurement of the
structural test coverage and the automated execution of
runtime analyses in the fully integrated system. Thanks to a
new technology, this analysis is now possible without
software instrumentation and thus without influencing the
runtime behavior.
 In addition, it allows the cause of complex error patterns
to be efficiently analyzed even after a system has been
released. To be able to use this technological capability,
wide-bandwidth access to the trace data output by a proces-
sor is required.W (oe)

or many years, control units in automobiles have been
taking over more and more compute-intensive tasks - and
no end to this trend is in sight. With the increasing
complexity, the probability of errors goes up while the
efficiency of their elimination goes down [1]. The

constantly increasing computing load makes the use of
multi-core processors inevitable for many applications.
However, the transition from sequential to parallel process-
ing can introduce errors that are very difficult to reproduce,
particularly if the code was never intended for parallel execu-
tion.
 Without doubt, liability reasons demand special diligence
in software development and testing from the automotive
industry. However, testing and debugging environments

only make sense if they help to assign root causes to
observed error symptoms. Observability is, therefore, key.
In contrast to traditional single-core systems, modern
multi-core architectures present us with special challenges.
The more integrated such a system is, the more difficult it
is to understand internal processes. This is exactly where
the technology presented in this article provides support.

Proven and Novel Tools

 Software instrumentation is widely used and estab-
lished for monitoring internal processes. Automatically
added code logs the execution of the program, for exam-

ple, to measure the execution times of code blocks or to
determine the coverage of tests. However, instrumentation
requires memory space and impacts the temporal behavior of
program execution.
 Fortunately, there is an alternative: Almost all modern
processors feature an embedded trace unit (e.g. Intel Proces-
sor Trace [2]), which communicates via a designated (e.g.
AGBT) or a standard interface (e.g. USB DCI, PCIe). This unit
provides information about the executed program flow
without affecting it. Depending on the architecture and trace
configuration, the temporal execution behavior and memory
data accesses can also be reconstructed. In addition, many
trace units enable lightweight hardware-supported instru-
mentation, which is thus acceptable in the release code, (e.g.
PTWrite, MIPI STP [4]) as well as the tracing of peripheral
units (memory controllers, communication units).
 The embedded trace solutions commonly used today
store the broadband trace data (several Gbit/s) in temporary
buffer memory. At the end of a test run, the program flow is
reconstructed on a PC, and the structural coverage is calculat-
ed. The limits of this procedure are the observation time
bounded by the size of the buffer memory and the additional
computing time required for the offline reconstruction of the

program flow.
 The live analysis is a further enhancement beyond the
established offline analysis of recorded trace data. It requires
two technical challenges to be mastered. On the one hand,
the highly compressed trace data stream must be pre-pro-
cessed and the control flow of the CPU(s) must be recon-
structed. This computation must work for fast CPUs (>1 GHz)
and for different operating systems. On the other hand, the
generated event stream must be processed as, for example,
by recording jump information to facilitate the calculation of
the structural test coverage or by dynamically monitoring a
large number of properties using data flow processors that
can be configured in a high-level language.

Use Case A: Code Coverage

 The standards for the development of safety-critical
systems (e.g. [4]) define requirements for the test process,
the test techniques to be applied and the verification of the
completeness of these tests by measuring the structural
coverage. For the latter, it must be shown, depending on the
criticality of the application, that all instructions (Statement
Coverage), all jumps (Branch Coverage) or all relevant combi-
nations of conditions for branches (MC/DC) have been
invoked during the tests. In general, the standards leave it
largely open, on which test level (system test, integration
test, module test) the structural coverage is validated. Ideally,
the requirements specification is included in the test so that
the structural coverage can also make a statement about the
quality of the requirements.
 As discussed in detail in the CAST-17 position paper [5],
the measurement of the structural coverage on object code
level provides different information than a measurement on
source code level. Leveraging the debug information generat-
ed by the compiler, the measured object code coverage can
be mapped to the corresponding source code coverage, as
illustrated in Figure 2.
 This analysis of the debug information can now be
combined with the live analysis: Without any instrumentation

Dr.-Ing. Alexander Weiss
CEO
Accemic Technologies GmbH

Dr. Michael Paulitsch
Dependability Research
Architect, Principal Engineer
Intel Deutschland GmbH

Dr. Stephan Grünfelder
Test Trainer
embedded-test.webs.com

Max Jonas Friese
Software Architect
Mercedes-Benz AG

www.accemic.com

This work was funded with funds from the EU H2020 project
732016 "COEMS" and from the BMBF project "ARAMiS 2"
(FKZ 01IS16025).
An in-depth investigation of the measurement of structural
test coverage in integrated systems is carried out in the
"CoCoSI" research project (BMBF KMU Innovativ, FKZ
01IS19044) with the project partners Accemic Technologies,
Fraunhofer IESE, Heicon and Intel.

(and thus without changing the dynamic behavior of the
target system), the test coverage for the target system is
determined. An example of such an analysis system is the
CEDARtools® system shown in Figure 1, which performs live
analysis using an FPGA.
 Measuring structural test coverage during integration and
system testing is able to identify gaps in these tests, and
replace structural unit tests.

Use Case B: Dynamic Analysis

 Static analysis is an essential element in the development
process. Due to missing or oversimplified models, this
method is increasingly reaching its limits rendering the
complementary dynamic analysis of embedded systems
more and more important. Also, this approach can be imple-
mented using the hardware outlined above.
 For this purpose, selected instruction addresses are
marked during the continuous reconstruction of the control
flow. At the execution of these instructions, specific events
are automatically injected into the emitted event stream,
which can then be analyzed online for specific properties. The
used event processing units can be configured in a high-level
language (www.tessla.io [6]). A large number of temporal
properties (e.g. defined by AUTOSAR TIMEX [7] or Amalthea)
can be monitored in parallel. The FPGA only requires a param-
eterization of the event processing units, an individual synthe-
sis of logic structures is not necessary. Thus, a change of the
high-level language property description can be applied to a
trace data stream within seconds. An example is shown in
Figure 3.
 Dynamic analysis is also a powerful tool for debugging,
especially for complex non-deterministic error patterns.
Depending on the probability of occurrence and the area of
application, the search for one of these defects can quickly
lead to six-digit costs [8].

Design Considerations

 Already in the specifications, suitable precautions should
be defined to achieve comprehensive observability of the
Electronical Control Unit (ECU) both during the tests and after
the release. The trace interface should be available in specific
ECU versions during the test phase as well as in production
vehicles. In addition, for tests on pre-production and produc-
tion vehicles, the interference-free transmission of trace data
from the ECU to the analyzer (which is usually located inside
the vehicle) must be ensured.

Summary

 The continuously increasing number of post-release
defects with increasing complexity requires the application of
new test methods. These include the measurement of the
structural test coverage and the automated execution of
runtime analyses in the fully integrated system. Thanks to a
new technology, this analysis is now possible without
software instrumentation and thus without influencing the
runtime behavior.
 In addition, it allows the cause of complex error patterns
to be efficiently analyzed even after a system has been
released. To be able to use this technological capability,
wide-bandwidth access to the trace data output by a proces-
sor is required.W (oe)

[1] C. Jones and O. Bonsignour, The Economics of Software Quality. Addison-Wesley,
2011.

[2] Intel® 64 and IA-32 Architectures Software Developer’s Manual. Intel Corporation,
2016.

.5102 ,.cnI ,ecnaillA IPIM .’)PTS(locotorP ecarT metsyS rof noitacificepS‘]3[

[4] ‘ISO 26262:2018. Road vehicles – Functional safety’. International Organization for
Standardization Std., 2018.

-ohtuA noitacifitreC AAF .’edoC tcejbO fo egarevoC larutcurtS :71-TSAC repaP noitisoP‘]5[
rities Software Team (CAST), Jun-2003.

-SSeT‘ ,amohT .D dna ,ztimhcS .M ,leffehcS .T ,rekcueL .M ,rekceregnuH .S ,tnevnoC .L]6[
La: Temporal Stream-Based Specification Language’, in Formal Methods: Foundations
and Applications, Cham, 2018, pp. 144–162.

 :elbaliavA .]enilnO[.’snoisnetxE gnimiT fo noitacificepS :XEMIT-RASOTUA‘]7[
http://www.autosar.org/.

[8] B. Hanke and F. Schulz, ‘Master Thesis: Assessment of multi-core integration infra-
structure’, University of German Armed Forces Munich, Munich, 2014.

-erP ,tsaP :gnireenignE erawtfoS evitomotuA‘ ,.sdE ,dnarB ned nav .M dna nerusjaD .Y]9[
sent, and Future’, in Automotive Systems and Software Engineering – State of the Art
and Future Trends, Springer, 2019, pp. 3–8.

[10] P. Mallozzi, P. Pelliccione, A. Knauss, C. Berger, and N. Mohammadiha, ‘Autonomous
Vehicles: State of the Art, Future Trends, and Challenges’, in Automotive Systems and
Software Engineering – State of the Art and Future Trends, Y. Dajsuren and M. van den
Brand, Eds. Springer, 2019, pp. 347–367.

[11] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, ‘Giotto: a time-triggered language for
embedded programming’, Proc. IEEE, vol. 91, no. 1, pp. 84–99, 2003.

List of references

