Structural High-level Tests

Alexander Weiss, Accemic Technologies GmbH
Martin Heininger, HEICON Global Engineering GmbH

"
-’.
. o
l..A
.
-

A

ACCE&EMIC Thepioneerinembedded systems dynamic analysis.
TECHNOLOGCISS Automated, non-intrusive and continuous.

;;;;;
- 'q“"‘ ¢

Motivation
Bug-free Software is a Myth.

Trends: Software defects are a considerable cause for
 More complex integrated systems * Project schedule overruns (~60%) 1

o Software-driven safety-critical applications * Project budget overruns (~50%) 1

(e.g. autonomous driving) « Proiect cancellation (~10-20%) 23

» Increased number of critical software defects » Higher maintenance costs
(Airbus study#: Cost of a non-frequent failure: up to 500,000 €)

* [njuries, accidents, recalls

Toyota "Unintended
" Has Killed 89

AP PHOTOSETH WENG

Unintended acceleration in Tovota vehicles may have been involved in the deaths
of 89 people over the past decade, upgrading the number of deaths possibly linked
to the massive recalls, the government said Tuesday

The National Highway Traffic Safety Administration said that from 2000 to mid-

May, it had received more than 6,200 complaints involving sudden accel

Tovota vehicles. The reports include 80 deaths and 57 injuries over the same

period. Previously, 52 deaths had been suspected of being connected to the 1 Gartner Research

problem. it //wwwchsnews.com/news 8 -uni sceleration-has-killed- 89 . . .
o S A P 2 Emam et al, “A Replicated Survey of IT Software Project Failures.”

O Copyright 209, Phiip Kegpman. CC Attrbution 4.0 Intemational ioerse
3 Standish Chaos Report

4 Hanke et al, “Assessment of multi-core integration infrastructure” Munich, 2014.

AcCCeMIC The pioneer in embedded systems dynamic analysis.

. . . © 2020 A ic Technologi bH.
TECHNOLOODISS Automated, non-intrusive and continuous. ccemic Technologies Gm

Motivation
Bug-free Software is a Myth.

McKinsey & Company (2018):

"Snowballing complexity is causing
significant software-related quality issues ...

- .]t.':-"v- R ST
‘] MIilI 1°\
lIlEr _““1 1!)"|_|,]‘.L_‘_,,;),
) -_".- v"\)-\c‘ —.'-I o ol A (h\ —y .“l':
{ »'\\': AINro 1] J
01 o0ftware yualt

i

Size of SW Average Defect Defect Removal
projects in FP Potential Efficiency
(Defects / FP)
100 3,00 98%
638 Jones 10000 6,25 96%
Olivier Bonsignour
1.000.000 8,25 86%

1 MLOC (C-Code) => 6.250 FP => ~35.000 defects => ~ 2.500 Post Release Defects

A\ *1 FP (Function Point): ~160 LOC (C language), ~64 LOC (ADA), ~32 LOC (C++)

AcCCeMIC The pioneer in embedded systems dynamic analysis.

. . . © 2020 A ic Technologies GmbH.
TECHNOLOODISS Automated, non-intrusive and continuous. ccemic fechnologies Gm

Motivation
Bug-free Software is a Myth.

Average Defect
Potential increases °

. .]
with the size of SW ¢

projects.

Increasing size
of SW projects x

Additional
non-deterministic defects,
caused by multicore
Interferences

Post-release defects

* Challenges for testing
* Challenges for maintenance

Code Complexity

A\

AcCCeMIC The pioneer in embedded systems dynamic analysis.
TECHNOLOGCISS Automated, non-intrusive and continuous.

Defect Removal
Efficiency decreases
with the size of SW

projects.

* Challenges for embedded software architecture

© 2020 Accemic Technologies GmbH.

What we can do

Challenges: Our contribution:
* Improve development process * Regain observation capabilities
- Improve test effectiveness and y = in highly integrated multicore systems
test efficiency aamm Enable continuous, non-intrusive
- Improve in-field analysis and online observation and automated validation
debug capabilities » Structural coverage at higher test levels
. ... » Timing analysis at higher test levels

Post-release defects

Code Complexity

A\

AcCCeMIC The pioneer in embedded systems dynamic analysis.

. . . © 2020 A ic Technologi bH.
TECHNOLOODISS Automated, non-intrusive and continuous. ccemic Technologies Gm

Dynamic Tests

Overview

Testing Techniques

Static Dynamic

Functional | | Structural Functional tests (black box)

Test the implementation of the

Control Flow Data Flow

functional requirements.

Statement Coverage

Requirements Product | Branch Coverage

4L 17

MC/DC Structural tests (white box)
System Tests | | Did my functional tests use all my code?

Integration Tests

High Level

Low Level

A\

AcCceMIC The pioneer in embedded systems dynamic analysis.
TECHNOLOGCISS Automated, non-intrusive and continuous.

Module Tests

..

© 2020 Accemic Technologies GmbH.

Dynamic Tests

Requirements Product

4L 17

High Level

Low Level

A\

Overview
Testing Techniques
I
Static Dynamic
Functional Structural

Integration Tests

]
Ltew

System Tests

Control Flow Data Flow

Statement Coverage

Branch Coverage

MC/DC

Module Tests

AcCceMIC The pioneer in embedded systems dynamic analysis.
TECHNOLOGCISS Automated, non-intrusive and continuous.

Functional tests
Test the implementation of the
functional requirements.

Structural tests
Did my functional tests use all my code?

© 2020 Accemic Technologies GmbH.

Dynamic Tests

Overview

Testing Techniques

Static Dynamic

Functional i Structural
I I

Control Flow Data Flow

of Executed Statements
of Statements

Statement Coverage|! Statement Coverage =

Requirements Product | Branch Coverage

4L 17

MC/DC

System Tests
High Level 5
. Integration Tests : !

Low Level

A\

AcCceMIC The pioneer in embedded systems dynamic analysis.
TECHNOLOGCISS Automated, non-intrusive and continuous.

Module Tests

..

© 2020 Accemic Technologies GmbH.

Dynamic Tests

Overview

Testing Techniques

Static Dynamic

Functional i Structural
I I

Control Flow Data Flow

Statement Coverage

of Executed Branches
of Branches

Requirements Product Branch Coverage Branch Coverage =

4L 17

MC/DC

System Tests
High Level 5
. Integration Tests : !

Low Level

A\

AcCceMIC The pioneer in embedded systems dynamic analysis.
TECHNOLOGCISS Automated, non-intrusive and continuous.

Module Tests

..

© 2020 Accemic Technologies GmbH.

Dynamic Tests

Overview

Testing Techniques

Static

Dynamic

Functional

Requirements

Product

17

High Level

Low Level

A\

ACCeMIC

TECHNOULOLIES

...

System Tests

Integration Tests

Structural

Control Flow

Data Flow

Statement Coverage

Branch Coverage

MC/DC

Module Tests

The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

A Practical Tutorial on Modified Condition/
Decision Coverage

MC/DC

—ach condition in a decision has been shown to
independently affect that decision's outcome.

A condition is shown to independently affect a
decision's outcome by varying just that condition

while holding fixed all other possible conditions.
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010057789.pdf

© 2020 Accemic Technologies GmbH.

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010057789.pdf

Dynamic Tests

Overview

Testing Techniques

Static Dynamic
[Functional | [Swawa | | Functional tests (black box)
e I — Test the implementation of the
| Saementcoemsg functional requirements.
Requirements Producté Branch Coverage
— = i MC/DC Structural tests (white box)

| System Tests Enm— Did my functional tests use all my code?
Integration Tests—

Mod ule Tests

High Level

IMPROVEMENT:
Structural tests for high-level tests.

Low Level

A\

AcCceMIC The pioneer in embedded systems dynamic analysis.
TECHNOLOGCISS Automated, non-intrusive and continuous.

..

© 2020 Accemic Technologies GmbH.

— High-level Structural Tests

Requirements Product

structural

|control row| | data flow |

A\

AcCCeMIC The pioneer in embedded systems dynamic analysis.

TECHNOULOLIES

Requirements fur

o structural tests
25 B5 BE
s’ (-
JOF @wa o
> C C c B
Q c o <P
o o
Ne) o0 >
@ O c O
i Z ©
S =
= -
&
System tests Y Y Y
Integration tests Y Y Y
Module tests N N N

Automated, non-intrusive and continuous.

Limitations by using SW instrumentation
Limitations by using SW instrumentation

SW instrumentation is perfect.

© 2020 Accemic Technologies GmbH.

High-level Structural Tests

Integration tests

Requirements fur
structural tests

A\

ACCeMIC

TECHNOULOLIES

£§ ©g ©Oc
S% &%z &8
> cC C c B
b C Q (qV)
Q c O < O
O o
O oT0) >
O = 26
£ E
+ ()
&
System tests Y Y Y Limitations by using SW instrumentation
Integration tests Y Y Y Limitations by using SW instrumentation
Module tests N N N SW instrumentation is perfect.

°®

State of the art:
Measuring code coverage
using SW instrumentation

The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

© 2020 Accemic Technologies GmbH.

High-level Structural Tests

Requirements fur
structural tests

£S5 O S ©c New approach:
“s £ 23 Non-intrusive and continuous
@) .
a2 52 S< observation
@) O c O
Z = = O
R
= O

O
Limitations by using SW instrumentation

Integration tests - - - Limitations by using SW instrumentation

Module tests N N N SW instrumentation is perfect.

A

ACCE&EMIC Thepioneerinembedded systems dynamic analysis.
TECHNOLOCIES Automated, non-intrusive and continuous.

© 2020 Accemic Technologies GmbH.

ACCeEMIC

TECHNOULOLIES

Non-intrusive and
Continous Observation

A

CeDARTOOLS
Processor -
(Aurix, Cortex-A, S MELtIf:bp; n Live Synchronized Live
Intel Atom, QorlQ) yhenronizatio Digital Twin Rule Processing

The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

ACCeMIC

© 2020 Accemic Technologies GmbH.

Non-intrusive and
Continous Observation

-.o:“
Ug
23
Ws
Uz
Us
<f
CEDARtools® Hardware Platform]
(Intel, ARM, PPC, Aurix) 3 (FPGA Board) '
o)
>
=)
c
Periphery CPUO Instr / Data I_> 8 h h d Trace Data &0
trace ™ Trace S 1= Ig _Spee _> P ‘n
o ' re-processin 0 :
- Instr / Data -Lc), o sertel P 5 Branch Branch o Object code
Per CPU1 | . cepP ol l | and —Branches—»| o
— T O | Counter counts o coverage
<4 st/ Dot i Chl > Debug Control Flow bt
Mem cpu2 | Mr/bE by O f | = < . 2
—" LI 1= = . Server Reconstruction 9
- Instr / Dat @ b A
Mem CPUn | ™/ = v
O
=
T— l————-
0 |
. . . . |
B|n|ary » Configuration > .g urce code
| | o8 coverage
—Source Code—» Compiler Debug information > S &
|
—

A

AcCCeMIC The pioneer in embedded systems dynamic analysis.

. . . © 2020 A ic Technologi bH.
TECHNOLOODISS Automated, non-intrusive and continuous. ccemic Technologies Gm

Non-intrusive and
Continous Observation

-.o:.,
Uy
2.2
o Wy
. . = Hj
Live synchroniced : &
e I Live branch 5
| digital twin)=
(Intel, ARM, PPC, Aurix) < counter = 3
> © @)
= O
Periphery 7o) 2 high-speed | Trace Dat =
eripner CPUO nstr ata c |g _Spee race a a =
trace Trace +
- instr / Dat S S serial | Pre-processing Branch Branch g Object code
Per CPul | ™[% |—> T o ———————1 and —Branches—» o .
—t © O " Debu Counter counts = coverage
. i o | g Control Flow =
Mem S L B ke . -
™ e = - Server Reconstruction S
- Q| — —
Mem CPUn | "™/Pa v X
J 8
=
T |____‘
) i
L q : :
B|n|ary Configuration > .téo Cource code
| -y coverage
—Source Code—» Compiler Debug information > § &
I
I
—

A

AcCCeMIC The pioneer in embedded systems dynamic analysis.

. . . © 2020 A ic Technologi bH.
TECHNOLOODISS Automated, non-intrusive and continuous. ccemic Technologies Gm

— High-level Structural Tests

functional

|control row| | data flow |

System tests

Integration tests

Module tests

OBLIVION

Continuous and non-intrusive
e Statement Coverage

e Branch Coverage (EX/NEX)

e Performance measurement
(count executed instructions)

Measured on object code level
Measured on release code

No instrumentation

No limitation due to trace buffer size

VV VY

| |

! 670

b |

JI : f{}f
x4D0881 x4D089B 7 ! 1072~ 3015
.fl ' .7
! 1 |'II
\ 9581 8011 | 670 670 x4008BA
N f Voo

Targets:

e Infineon Aurix™ (TC2xx & TC3xx),
e Arm® Cortex® -A9,

o Intel® x86 (Atom® E3950),

e NXP QorlQ® P- and T-series, o s

A e Arm® Cortex® -A5x under development. <_:>

AcCceMIC The pioneer in embedded systems dynamic analysis.

. . . © 2020 A ic Technologi bH.
TECHNOLOODISS Automated, non-intrusive and continuous. ccemic Technologies Gm

— High-level Structural Tests

functional

|control row| | data flow |

Requirements Product

System tests

Integration tests

Module tests

Continuous and non-intrusive
e Statement Coverage

e Branch Coverage (EX/NEX)
e Performance measurement

- : 70 10062C: e51b3010 1dr r3, [fp, #-16]
(count executed instructions) o 100630, 03590001 cmp 3. 1
[+, +] 70 100634: 92000010 bls 10067c < Z13collatz depthj+0x68>
61 100678: eaffffeb b 10062c <_Z13collatz_depthj+0x18>
» Measured on object code level
61 100638: e51b3010 1dr r3, [fp, #-16]
> Measured on release code 61 10063C: €2033001 and r3, r3, #]1
. . 61 100640: €3530000 cmp r3, #0
> NoO Instrumentation [+ +] 61 100644: 0a000005 beq 100660 < Z13collatz_depthj+Ox4c>
L . 16 100648: e51b2010 1dr r2, [fp, #-16]
» No limitation due to trace buffer size 16 10064C: 1203002 mov r3, r2
16 100650: €1a03083 1sl r3, r3, #1
16 100654: €0833002 add r3, r3, r2
T fo: 16 100658: €2833001 add r3, r3, #1
arge S. 16 10065C: eab0pool b 100668 <_Z13collatz_depthj+0x54>
: : ™ 45 100660: e51b3010 1dr r3, [fp, #-16]
° |nﬂneon AUHX (TCZXX & TC3XX), 45 100664: elab30a3 Isr r3, r3, #I
® Arm® Corte><® _AQ’ 61 100668: e50b3010 str r3, [fp, #-16]

e Intel® x86 (Atom® E3950),
e NXP QorlQ® P- and T-series,
A o Arm® Cortex® -A5x under development.

AcCCeMIC The pioneer in embedded systems dynamic analysis.

. . . © 2020 A ic Technologi bH.
TECHNOLOODISS Automated, non-intrusive and continuous. ccemic Technologies Gm

P High-level Structural Tests

functional

|control row| | data flow |

statement coverage

Requirements Product

condition coverage

System tests

Integration tests

‘Module tests 12 // Compute n-th Fibonacci number using recursion.
13 // - n < 2 does not trigger the else branch.
> 14 275 unsigned fib(unsigned const n) {
> 15 [+,+] 275 return (n < 2)? n : fib(n-2) + fib(n-1);
. . . > 16 275 3
COHUHUOUS and ﬂOﬂ-Iﬂtl’USlve 17 // Unfold Collatz sequence and return its length.
° Statement Coverage 18 // - n <=1 will not execute the while loop at all.
19 // - n = 2" will never trigger the 3*n+1 path.
o Bl’aﬂCh CO\/erage (EX/N EX) > 20 9 unsigned collatz_depth(unsigned n) {
> 21 9 unsigned depth = 0;
e Performance measurement v 2| [+ 70 while(n > 1) {
: . 70 10062C: e51b3010 1dr r3, [fp, #-16]
(count executed instructions) o 100630, 03590001 cmp 3. 1
[+,+] 70 100634: 9a000010 bls 10067c <_Zl3collatz_depthj+0x68>
61 100678: eaffffeb b 10062c <_Z13collatz_depthj+0x18>
» Measured on object code level Y S o1 2 (GELT 0 - o
J 61 100638: e51b3010 1dr r3, [fp, #-16]
> Measured on release code 61 10063C: €2033001 and r3, r3, #]1
. . 61 100640: e3530000 cmp r3, #0
» No Instrumentation [+,+] 61 100644: 02000005 beq 100660 <_Z13collatz_depthj+0x4c>
o . . 16 100648: e51b2010 1dr r2, [fp, #-16]
» No limitation due to trace buffer size 16 10064C: 1203002 mov r3, r2
16 100650: e1a03083 1sl r3, r3, #1
16 100654: e0833002 add r3, r3, r2
. 16 100658: €2833001 add r3, r3, #1
Ta rgetS. 16 10065C: eab0pool b 100668 <_Z13collatz_depthj+0x54>
: ', T™M 45 100660: e51b3010 1dr r3, [fp, #-16]
° |nﬂneon AUHX (TCZXX & TC3XX)’ 45 100664: elab30a3 Isr r3, r3, #I
® ® _ 61 100668: e50b3010 str r3, [fp, #-16]
. ¥ r
Arm® Cortex® -A9, ._ y = denthar.
o Intel® x86 (Atom® E3950), 25 }
. > 26 9 return depth;
e NXP QorlQ® P- and T-series, > 27 9 }
A o Arm® Cortex® -A5x under development

AcCceMIC The pioneer in embedded systems dynamic analysis.

. . . © 2020 A ic Technologi bH.
TECHNOLOODISS Automated, non-intrusive and continuous. ccemic Technologies Gm

— High-level Structural Tests

functional

|control row| | data flow |

System tests

Integration tests

S 12 // Compute n-th Fibonacci number using recursion.
1 13 // - n < 2 does not trigger the else branch.
> 14 275 unsigned fib(unsigned const n) {
> 15 [+,+] 275 return (n < 2)? n : fib(n-2) + fib(n-1);
. . . > 16 275 3
COHUHUOUS and ﬂOﬂ-Iﬂtl’USlve 17 // Unfold Collatz sequence and return its length.
° Statemeﬂt Coverage 18 // - n<=1 wi}l not exe{:m.:e the while loop at all.
19 // - n = 2"k will never trigger the 3*n+1 path.
® BraﬂCh CO\/erage (EX/N EX) > 20 9 unsigned collatz_depth(unsigned n) {
> 21 9 unsigned depth = 0;
e Performance measurement > 22 | [+ 70 while(n > 1) {
. . > 23 [+,+] 61 n = (n&l1)? 3*n+1 : n/2;
(count executed instructions) g o o depthes
25 }
. > 26 9 return depth;
Measured on object code level > 27 9 }

Vieasured on release code
NoO Instrumentation
No limitation due to trace buffer size

VV VY

Targets:
o Infineon Aurix™ (TC2xx & TC3xx),
e Arm® Cortex® -A9,
o Intel® x86 (Atom® E3950),
e NXP QorlQ® P- and T-series,
A o Arm® Cortex® -A5x under development.

AcCCeMIC The pioneer in embedded systems dynamic analysis.

. . . © 2020 A ic Technologi bH.
TECHNOLOODISS Automated, non-intrusive and continuous. ccemic Technologies Gm

High-level Structural Tests

Substitution of Low-Level Structural Tests

DO178C (6.4):

» |f a test case and its corresponding test procedure are developed and executed for HW/SW
or SW integration testing and satisfy the requirements-based coverage and structural
coverage, it is not necessary to duplicate the test for low-level testing.

» Substituting nominally equivalent low-level tests for high-level tests may be less effective
due to the reduced amount of overall functionality tested.

A\

ACCEMIC Thepioneerin embedded systems dynamic analysis. | |
TECHNOLOGIES Automated, non-intrusive and continuous. © 2020 Accemic Technologies GmbH.

- High-level Structural Tests

Substitution of Low-Level Structural Tests

Structural code coverage
measured at high level tests: ~60%

System System # System Test
Architecture Requirements
HW/SW
Software Software Integration Test
: High-Level
Architecture :
Requirements
Integratlon Test
Software Software
Desian Low-Level
g Requirements SW Unit Test

Implementation — Source Code

R 1 1 1

DCmEﬂge:-:il?w’i B Coverage = % W Coverage =1

Structural coverage
O

O

Remaining structural code coverage

to be evidenced for certifications:
~ (95%-60% = 35%)

A\

AcCCeMIC The pioneer in embedded systems dynamic analysis.
TECHNOLOGCISS Automated, non-intrusive and continuous.

© 2020 Accemic Technologies GmbH.

— High-level Structural Tests

Completeness of High-Level Tests

System tests

Requirements Product

Integration tests

Module tests

Measurable statement of

the completeness
of High-Level Tests

O
System System # System Test
Architecture Requirements
HW/SW
Software Software Integration Test
: High-Level
Architecture Requirements
b SW
Integration Test
Software Software
Desian Low-Level _
g Requirements SW Unit Test

Implementation — Source Code

- I .
=l

B Coverage = % W Coverage =1

Structural coverage

A

AcCCeMIC The pioneer in embedded systems dynamic analysis.
TECHNOLOGCISS Automated, non-intrusive and continuous.

© 2020 Accemic Technologies GmbH.

Integration tests

PROs

e |t can demonstrate full code coverage at the object code level.
e |t can support more “valid” coverage.

e |t |s closer to the final software .

e |t can be Implemented with source code programming

language Independence.

e |t can reduce time-consuming manual analysis.

e NO Instrumentation Is required.

e |t can also be used for the objective measurement of the

quality of integration and system tests.

e |t can reduce the test effort by substituting low-level tests.
e [ncomplete requirements and tests are found at the system level.

A\

ACCeMIC

TECHNOULOLIES

The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

Listing 1: Illustrative example, source code in C

High-level Structural Tests

at Object Code Level

I charx pass_fail(char grade) {
2 static char msg[2][6] = {"pass", "fail"};
3 int pass;
4 if (grade==’d’||grade=="£f’) {
5 pass = O0;
6 } else if (grade==’a’ || grade==’b’ ||
grade==’c’) A
7 pass = 1;
8 } else { pass = -1; }
9 return pass 7 msglpass] : msgl[0];
10}
Listing 2: x86 code compiled with -00
1 /% if (grade == ’d’ || grade == ’f’) x*/
2 8048439: cmpb $0x64,-0x14 (%ebp)
3 804843d: je 8048445 // jump if grade==’d’
4 804843f: cmpb $0x66,-0x14 (% ebp)
5 8048443: jne 804844e // jump if grade!=’f"
6 8048445: movl $0x0,-0x4(%ebp) // pass:=0
7 804844c: jmp 8048470 // jump to return
8 /* else if (grade==’a’||...||grade==’c’) x/
9 804844e: cmpb $0x61,-0x14(%ebp)
10 8048452: je 8048460 //jump if grade==’a’
11 8048454: cmpb $0x62,-0x14 (%ebp)
12 8048458: je 8048460 //jump if grade==’Db’
13 804845a: cmpb $0x63,-0x14 (%ebp)
14 804845e: jne 8048469 //jump if grade!=’c¢c’
15 8048460: movl $0x1,-0x4(%ebp) // pass:=1
16 8048467: jmp 8048470
17 /% else (pass:=-1) */
18 8048469: movl $O0xffffffff ,-0x4 (% ebp)
19

T. Byun, V. Sharma, S. Rayadurgam, S. McCamant, and M. P. Heimdahl, ‘“Toward Rigorous Object-Code Coverage Criteria’, in 2017
IEEE 28th International Symposium on Software Reliability Engineering (ISSRE), 2018, vol. 00, pp. 328-338.

© 2020 Accemic Technologies GmbH.

at Object Code Level

P High-level Structural Tests

Requirements Product
L il

System tests
High Level i
Integration tests

Listing 1: Illustrative example, source code in C

Low Level Module tests

Il char* pass_fail(char grade) {
% gt:tic c?ar msg [2] [6] = {"pass", "fail"};
4 i? (gi:Zé==’d’||grade==’f’) {
5 ass = ;
CONS 6 } elIs)e if (grac;ie:=’a’ || grade==’b’ ||
. ol . . rade==’¢’
e Source code to object code traceability can be difficult T et
(depending on compiler support). o revurn pacs 7 maglpass] : msg(0);
e Optimizing compiler can use difficult-to-monitor flags to process Listing 3: x86 code compiled with ~0s
multi-conditions. (we are working on solutions...)) 5045256 nov. 4onb04a0lc %eax/s feas:emsg L0l
. 3 804845b: mov ‘Yesp,hebp
o [ypical tools use the source code level. } 804845d: mov 0x0(lebp) hedx // fedrigrade
6 8048460: mov %dl,%cl // hcl:=grade
7 // ASCII(’d’)=0x64, ASCII(’f’)=0x66,
8 // f’"0xfffd=’d’, ’d’"0xfffd=’d’
Q9 8048462: and Q$O0xfffffffd,6Yecx

10 8048465: cmp $0x64,%cl // ’d’, grade

Il 8048468: je 804847e // hcl==’d’->return
12 /% else if (grade==’a’||...||grade==’c’) x*/
13 /% else x/

14 804846a: sub $0x61,%edx // Jedx=grade-’a’
15 804846d: cmp $0x3,%dl // CF=7edx<371:0
16 8048470: sbb Yeax,l%eax // Jeax:=CF7-1:0
17 8048472: and $0x2,%eax // Jeax:=CFE72:0

18 8048475: dec Yeax // theax:=CF?71:-1
19 /* return pass 7 msglpass] : msgl[O0]; =/

20 // Yieax:=bxY,eax

21 8048476: imul $0x5,%eax,leax

22 // eax:=msg+leax

23 8048479: add $0x804a0lc,’eax

24 804847e:

A T. Byun, V. Sharma, S. Rayadurgam, S. McCamant, and M. P. Heimdahl, ‘“Toward Rigorous Object-Code Coverage Criteria’, in 2017
IEEE 28th International Symposium on Software Reliability Engineering (ISSRE), 2018, vol. 00, pp. 328—338.

AcCceMIC The pioneer in embedded systems dynamic analysis.

. . . © 2020 A ic Technologi bH.
TECHNOLOODISS Automated, non-intrusive and continuous. ccemic Technologies Gm

High-level Structural Tests

Key enabler: Processor Trace

ARM CoreSight
Architecture Specification

DuT

(Intel, ARM, PPC, Aurix)

L >
Periphery Instr / Data
trace CPUO

CPU1 Instr / Data

Mem CPU2 Instr / Data

= = = =
S S S S
3| 3] 25 3=
o O ® o O ®

Mem CPUp | 'Mstr/Data

Trace Buffer and Concentrator

Most processors provide trace infrastructure:

® .

o ARM Cortex-A/-M/-R: CoreSight architecture Intel® 64 and IA-32 ArCthECtU"es

o Intel x86: IntelPT Software Developer’'s Manual

=/ |« NXP QorlQ P-series, T-series: Debug Assist Module T4240R2 Advanced QorlQ Debug
o e |Infineon Aurix: Emulation Device and Performance Monitoring
Reference Manual

A\

ACCeMIC

TECHNOULOLIES

Trace date consists of high-bandwidth information for reconstruction of TC29/7/6/3xED
e Control flow,
e OS related events (task changes),

e Data access (address, value),
and hardware-supported instrumentation: printf() replacement by simple MOV command.

32-Bit Single-Chip Micocontroller

Hardware-based monitoring infrastructure is integrated in most processors -
and is already paid by you ...
Mind trace interface access opportunities:
- in your hardware system requirement specifications and
- in your SoC architecture decision!

The pioneer in embedded systems dynamic analysis.

Automated, non-intrusive and continuous. © 2020 Accemic Technologies GmbH.

Requirements

High Level

Low Level

A\

ACCeMIC

TECHNOULOLIES

Bug-free Software is a Myth.

But there's something we can do.

Testing Techniques

Static

Dynamic

Product

The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

|}
Functional

1
Structural

Control Flow Data Flow

—Statement Coverage

— Branch Coverage

— MC/DC

System Tests —

Integration Tests —

Module Tests

Post-release defects

Code Complexity

Contact:

Accemic Technologies GmbH
Franz-Huber-Str. 39

83088 Kiefersfelden
WWW.aCCEMIC.COM)

Dr.-Ing. Alexander \Weiss
awelss@accemic.com

+49 8033 6039/95

© 2020 Accemic Technologies GmbH.

http://www.accemic.com/
mailto:aweiss@accemic.com

Backup slides

A

AcCceMIC The pioneer in embedded systems dynamic analysis.

. . : © 2020 Accemic Technologies GmbH.
TECHNOLOCIES Automated, non-intrusive and continuous.

Runtime Analysis

Not all paths can be
executed during tests

@ 5

% o FORMAL

5 Exgﬁ)srﬂ';ﬁ]e VERIFICATION
O Exploring the
E © State >PaLe state space
bs Dy checking by checking

likely paths

Not all elements
can be modelled

all paths

Runtime Analysis
Exploring the state space
by checking
actual paths

<+
c
Q
&
>~
O
Q.
()
©
=

A

ACCE&EMIC Thepioneerinembedded systems dynamic analysis.
TECHNOLOGCISS Automated, non-intrusive and continuous.

© 2020 Accemic Technologies GmbH.

| Testing techniques |

Runtime Analysis
Timing Analysis

| static | | dynamic |
|

functona

|control flowl | data flow |

Requirements Product

System tests

Integration tests

Module tests

.
DuT (Intel®, ARM, PPC, Aurix architecture) CEDARtools® Elements
o
> © CEDARtools® Hardware Platform (FPGA Board)
=
. @
ey [Jcpuo | i by 2| high-speed | Trace Data
- E Instr / Dat 8 E serial e Event Stream
Per - CPUL | "~ B @ and Events—» Analysic Results—»
|| Instr / Data ; E » DEbUg Control Flow !
m a2 Trace b= Server Reconstructiono
Mem — CPUnN Instr / Data ﬁ
Trace g
i : . Live processing
X Live synchroniced > of event streams
Binary digital twin
. Object code, o o
——C-Code—» C-Compiler Ject code » Configuration Configuration
debug symbols
Specs—p Front End

A\

ACCeMIC

TECHNOULOLIES

The pioneer in embedded systems dynamic analysis.

Automated, non-intrusive and continuous. © 2020 Accemic Technologies GmbH.

Runtime Analysis
Timing Analysis

: 7.1.4 BurstPatternEventTriggering
|
: [TPS_TIMEX_00013] BurstPatternEventTriggering specifies burst of occur-
Requirement & Test specifications :renc_es of events I'T.he elemr—'mt' BurstP.at.ternEventiI?rlggerlng is used to
¢ ¢ 4 specify the characteristics of a timing description event which occurs as a burst. |

I
I
I
I
I
I
I
Maximum Number of Occurrences = 7 Minimum Number of Occurrences = 5 :
I
I
I
I
I
I
I
I

I
lwIIIIIII ! v b |
User-specific constraints Automotive domain constraints | E e | T
specification specification | s .
(XML, Excel, ...) (AUTOSAR TIMEX, Amalthea, ...) e N
| Inter Arrival Tim

+ l + Burst Pattern
TeSSla
out bursts(x, burstLength = 2, waitingPeriod = 1,

I |

| |

| |

| |

| I

| |

| |

A | |
~~~~~~~~~~~~ | burstAmount = 3) as b :
~~~~~~~~~~~~ | |

L - | |

| I

I |

| |

| I

| |

| I

I |

| |

| |

in x: Events[Int]

i Hardware supported O?Di T % | | Q O | O | Q ’
| event processing Q%f:) i 21 21 2 1
| (~100M Events/s) I b : O—O—@ ® }
| CEDARTOOLS | " T T |
* High-level specification language
* Hardware-supported event processing
* Multiple constraints can be checked in parallel (see tessla.io)

AcCCeMIC The pioneer in embedded systems dynamic analysis.

. . . © 2020 A ic Technologi bH.
TECHNOLOODISS Automated, non-intrusive and continuous. ccemic Technologies Gm

http://www.tessla.io/

Runtime Analysis
Timing Analysis

» Use case: Safety-critical application to control
orakes
ECU .
e Requirement:
Processor . :
A e Ensure Timing Constraint from
o ! pressing the brakes, until their activation
nary e Constraint: Should react within 5ms!
C compiler
A
C code

read brake sensor(); =

]
<5ms
activate brakes(); é—l

AcCCeMIC The pioneer in embedded systems dynamic analysis.

. . . © 2020 A ic Technologi bH.
TECHNOLOODISS Automated, non-intrusive and continuous. ccemic Technologies Gm

Runtime Analysis
Timing Analysis

» Use case: Safety-critical application to control
U orakes
Drocessor e Requirement:
A e Ensure Timing Constraint from
, | pressing the brakes, until their activation
inar . L
Y » Constraint: Should react within 5ms!
C compiler
C code test specificationen
| |
. in read brake sensor : Events[Unit] Iz
read brake sensor(); ——I in activate brakes : Events[Unit]
gctivate raies (1 éjrins def latency : Events[Int] := calc latency(read brake sensor, activate brakes)
a E def test passed : Events[Bool] := if (latency < Eﬁs) then true else false

A\ T e ————————————

AcCCeMIC The pioneer in embedded systems dynamic analysis.

. . . © 2020 A ic Technologi bH.
TECHNOLOODISS Automated, non-intrusive and continuous. ccemic Technologies Gm

Runtime Analysis
Timing Analysis

® pAccemic

CEDARTOOLS

ECU CEDARtooIs® Code coverage

trace . ;
Processor dat digital twin
A atd Timing analysis
|
Binary analysis task /R
[

| —_—
1
| debu TeSSLa
C compiler —— i - (Zestpassed
information compiler
C code test specificationen
l |
" in read brake sensor : Events[Unit] T
read brake sensor(); ——-——1 in activate brakes : Events[Unit]
. <:iqm def latency : Events[Int] := calc latency(read brake sensor, activate brakes)
activate brakes(); é E
E def test passed : Events[Bool] := if (latency < Eﬁf) then true else false

A\ e

AcCCeMIC The pioneer in embedded systems dynamic analysis.

: - - 2020 A ic Technologi H.
TECHNOLOGISS Automated, non-intrusive and continuous. © 2020 Accemic Technologies Gmb

https://www.youtube.com/watch?v=3AYVWK-X9nw&feature=youtu.be

Runtime Analysis

Timing Analysis

File Edit Selection View Go Run Terminal Help

G+ demo.cpp X B latency-activate-brakes.tessla

demo > G+ demo.cpp > @ main(int, char * [])

=L

22 /* Program Entry */

23 int
24 4
25
26
27
28
29
30
31
32
33
34
35
36
37
38 [
39

main(int argc,char *argvl[])

/¥ Trace Setup */
atexit(cedar kill trace);
signal (SIGINT, sigint handler);
cedar linux init epu(false);
cedar set appid(0);

/* Program Routine */

while(1l) {
run_task();
usleep(10e3);

}

return 0;

40 void run task()

41 A
42
43
44
45
46

I® multi-specs*

/* Sample Brake Sensor */
float brake angle = read brake sensor();

/* Pracess */
int strength;

g

e

Zen

Ln 38, Col 2

Tab Size: 4

UTF-8

LiE

C++

P

Linux Inserk

AcCCeMIC The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

TECHNOULOLIES

© 2020 Accemic Technologies GmbH.

https://www.youtube.com/watch?v=3AYVWK-X9nw&feature=youtu.be

