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Motivation
Bug-free Software is a Myth.

Trends:

• More complex integrated systems

• Software-driven safety-critical applications
(e.g. autonomous driving)

➢ Increased number of critical software defects

Software defects are a considerable cause for

• Project schedule overruns (~60%) 1

• Project budget overruns (~50%) 1

• Project cancellation (~10-20%) 2,3

• Higher maintenance costs
(Airbus study4 : Cost of a non-frequent failure: up to 500,000 €)

• Injuries, accidents, recalls

1 Gartner Research
2 Emam et al, “A Replicated Survey of IT Software Project Failures.”
3 Standish Chaos Report
4 Hanke et al, “Assessment of multi-core integration infrastructure”   Munich, 2014.
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Motivation
Bug-free Software is a Myth.

Size of SW 
projects in FP

Average Defect 
Potential 

(Defects / FP)

Defect Removal 
Efficiency 

100 3,00 98%

10.000 6,25 96%

1.000.000 8,25 86%

McKinsey & Company (2018): 
"Snowballing complexity is causing 

significant software-related quality issues …“ 

* 1 FP (Function Point): ~160 LOC (C language), ~64 LOC (ADA), ~32 LOC (C++)

1 MLOC (C-Code) => 6.250 FP => ~35.000 defects => ~ 2.500 Post Release Defects
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Motivation
Bug-free Software is a Myth.

• Challenges for embedded software architecture
• Challenges for testing
• Challenges for maintenance

Defect Removal 
Efficiency decreases 
with the size of SW 
projects.

Average Defect 
Potential increases 
with the size of SW 
projects.

Additional 
non-deterministic defects, 
caused by multicore 
interferences

Increasing size 
of SW projects
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What we can do

Challenges:

• Improve development process

• Improve test effectiveness and 
test efficiency

• Improve in-field analysis and 
debug capabilities

• ….

Our contribution:

• Regain observation capabilities 
in highly integrated multicore systems

• Enable continuous, non-intrusive 
online observation and automated validation

➢ Structural coverage at higher test levels

➢ Timing analysis at higher test levels
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Dynamic Tests
Overview

Functional tests (black box)

Test the implementation of the 

functional requirements.

Structural tests (white box)

Did my functional tests use all my code?

Low Level

High Level
Integration Tests

System Tests

Testing Techniques

Static Dynamic

StructuralFunctional

Control Flow Data Flow

Statement Coverage

Branch Coverage

MC/DC

Requirements Product

Module Tests
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Dynamic Tests
Overview

𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
# 𝑜𝑓 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

# 𝑜𝑓 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠
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Dynamic Tests
Overview

𝐵𝑟𝑎𝑛𝑐ℎ 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
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Dynamic Tests
Overview

MC/DC

Each condition in a decision has been shown to 
independently affect that decision's outcome. 

A condition is shown to independently affect a 
decision's outcome by varying just that condition 
while holding fixed all other possible conditions.
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010057789.pdf

Low Level

High Level
Integration Tests

System Tests

Testing Techniques

Static Dynamic

StructuralFunctional

Control Flow Data Flow

Statement Coverage

Branch Coverage
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Requirements Product

Module Tests

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010057789.pdf
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Low Level

High Level
Integration Tests

System Tests

Testing Techniques

Static Dynamic
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Control Flow Data Flow

Statement Coverage

Branch Coverage

MC/DC
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Dynamic Tests
Overview

Functional tests (black box)

Test the implementation of the 

functional requirements.

Structural tests (white box)

Did my functional tests use all my code?

IMPROVEMENT: 

Structural tests for high-level tests.
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High-level Structural Tests

Low Level

High Level

Testing techniques

static dynamic

structuralfunctional

control flow data flow

statement coverage

branch coverage

condition coverage

Requirements Product

Module tests

Integration tests

System tests

Module tests

Integration tests

System tests
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High-level Structural Tests
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State of the art: 
Measuring code coverage 
using SW instrumentation
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High-level Structural Tests
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New approach: 
Non-intrusive and continuous 

observation
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Non-intrusive and 
Continous Observation

Multi Gbps 
Synchronization  

Processor
(Aurix, Cortex-A, 

Intel Atom, QorIQ)

Live Synchronized 
Digital Twin

Live 
Rule Processing
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CEDARtools® Hardware Platform 
(FPGA Board)

DuT 
(Intel, ARM, PPC, Aurix)
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CEDARtools® Hardware Platform 
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DuT 
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High-level Structural Tests

Continuous and non-intrusive

• Statement Coverage

• Branch Coverage (EX/NEX) 

• Performance measurement
(count executed instructions)

➢ Measured on object code level

➢ Measured on release code

➢ No instrumentation

➢ No limitation due to trace buffer size

Targets: 

• Infineon Aurix™ (TC2xx & TC3xx),

• Arm® Cortex® -A9, 

• Intel® x86 (Atom® E3950),

• NXP QorIQ® P- and T-series,

• Arm® Cortex® -A5x under development.

Low Level

High Level

Testing techniques

static dynamic

structuralfunctional

control flow data flow

statement coverage

branch coverage

condition coverage

Requirements Product

Module tests

Integration tests

System tests
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High-level Structural Tests

Continuous and non-intrusive
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High-level Structural Tests

Continuous and non-intrusive
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High-level Structural Tests
Substitution of Low-Level Structural Tests

Low Level

High Level

Testing techniques

static dynamic

structuralfunctional

control flow data flow

statement coverage

branch coverage

condition coverage

Requirements Product

Module tests

Integration tests

System tests

DO178C (6.4): 

• If a test case and its corresponding test procedure are developed and executed for HW/SW 
or SW integration testing and satisfy the requirements-based coverage and structural 
coverage, it is not necessary to duplicate the test for low-level testing.

• Substituting nominally equivalent low-level tests for high-level tests may be less effective
due to the reduced amount of overall functionality tested.
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High-level Structural Tests
Substitution of Low-Level Structural Tests
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SW Unit Test

SW 

Integration Test
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Integration Test

System Test

Structural coverage✓

✓

✓

✓

Remaining structural code coverage 
to be evidenced for certifications: 

~ (95%-60% = 35%)

Structural code coverage 
measured at high level tests: ~60%
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High-level Structural Tests
Completeness of High-Level Tests
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✓
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Integration tests

System tests

High-level Structural Tests
at Object Code Level

PROs

• It can demonstrate full code coverage at the object code level.

• It can support more “valid” coverage.

• It is closer to the final software .

• It can be implemented with source code programming

language independence.

• It can reduce time-consuming manual analysis.

• No instrumentation is required.

• It can also be used for the objective measurement of the

quality of integration and system tests. 

• It can reduce the test effort by substituting low-level tests.

• Incomplete requirements and tests are found at the system level.

T. Byun, V. Sharma, S. Rayadurgam, S. McCamant, and M. P. Heimdahl, ‘Toward Rigorous Object-Code Coverage Criteria’, in 2017 
IEEE 28th International Symposium on Software Reliability Engineering (ISSRE), 2018, vol. 00, pp. 328–338.
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control flow data flow
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Module tests
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High-level Structural Tests
at Object Code Level

CONs

• Source code to object code traceability can be difficult
(depending on compiler support).

• Optimizing compiler can use difficult-to-monitor flags to process
multi-conditions. (we are working on solutions…)

• Typical tools use the source code level.

T. Byun, V. Sharma, S. Rayadurgam, S. McCamant, and M. P. Heimdahl, ‘Toward Rigorous Object-Code Coverage Criteria’, in 2017 
IEEE 28th International Symposium on Software Reliability Engineering (ISSRE), 2018, vol. 00, pp. 328–338.
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High-level Structural Tests
Key enabler: Processor Trace

Most processors provide trace infrastructure: 

• ARM Cortex-A/-M/-R: CoreSight architecture 

• Intel x86: IntelPT

• NXP QorIQ P-series, T-series: Debug Assist Module

• Infineon Aurix: Emulation Device

Trace date consists of high-bandwidth information for reconstruction of 

• Control flow,

• OS related events (task changes),

• Data access (address, value),
and hardware-supported instrumentation: printf() replacement by simple MOV command.

Hardware-based monitoring infrastructure is integrated in most processors –
and is already paid by you …

Mind trace interface access opportunities:

- in your hardware system requirement specifications and

- in your SoC architecture decision!

CEDARtools® Hardware Platform 
(FPGA Board)

DuT 
(Intel, ARM, PPC, Aurix)
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Bug-free Software is a Myth.
But there's something we can do.

Contact: 

Accemic Technologies GmbH

Franz-Huber-Str. 39

83088 Kiefersfelden

www.accemic.com

Dr.-Ing. Alexander Weiss

aweiss@accemic.com

+49 8033 6039795
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http://www.accemic.com/
mailto:aweiss@accemic.com
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Backup slides
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FORMAL 
VERIFICATION
Exploring the 
state space 
by checking 

all paths

TESTING
Exploring the 
state space 
by checking 
likely paths

Runtime Analysis 
Exploring the state space 

by checking 
actual paths
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Not all elements 
can be modelled

Not all paths can be 
executed during tests

Runtime Analysis
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Runtime Analysis
Timing Analysis

Low Level

High Level

Testing techniques

static dynamic

structuralfunctional

control flow data flow

statement coverage

branch coverage

condition coverage

Requirements Product

Module tests

Integration tests

System tests

Live processing 
of event streamsLive synchroniced

“digital twin”
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Runtime Analysis
Timing Analysis

• High-level specification language

• Hardware-supported event processing

• Multiple constraints can be checked in parallel

User specific constraints 
specification

(XML, Excel, ...)

Automotive domain constraints 
specification

(AUTOSAR TIMEX, Amalthea, ...)

Requirement & Test specifications

Hardware supported 
event processing

( ~100M Events/s)

-

(see tessla.io)

http://www.tessla.io/
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Runtime Analysis
Timing Analysis

ECU

Processor

C code

Binary

C compiler

 

read_brake_sensor();

 

 

activate_brakes();

 

< 5ms

•Use case: Safety-critical application to control 
brakes

•Requirement:
•Ensure Timing Constraint from 

pressing the brakes, until their activation
•Constraint: Should react within 5ms!
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Runtime Analysis
Timing Analysis

ECU

Processor

C code

Binary

C compiler

 

read_brake_sensor();

 

 

activate_brakes();

 

test specificationen

< 5ms

in read_brake_sensor : Events[Unit]

in activate_brakes   : Events[Unit]

def latency : Events[Int] := calc_latency(read_brake_sensor, activate_brakes)

def test_passed : Events[Bool] := if (latency < 5ms) then true else false

•Use case: Safety-critical application to control 
brakes

•Requirement:
•Ensure Timing Constraint from 

pressing the brakes, until their activation
•Constraint: Should react within 5ms!
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Runtime Analysis
Timing Analysis

ECU

Processor

CEDARtools® 

digital twin
trace
data

Code coverage

Timing analysis

C code

Binary

C compiler

 

read_brake_sensor();

 

 

activate_brakes();

 

TeSSLa 
compiler

debug
information

analysis task

test specificationen

< 5ms

in read_brake_sensor : Events[Unit]

in activate_brakes   : Events[Unit]

def latency : Events[Int] := calc_latency(read_brake_sensor, activate_brakes)

def test_passed : Events[Bool] := if (latency < 5ms) then true else false

test_passed
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Runtime Analysis
Timing Analysis

https://www.youtube.com/watch?v=3AYVWK-X9nw&feature=youtu.be

https://www.youtube.com/watch?v=3AYVWK-X9nw&feature=youtu.be

