
© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

Structural High-level Tests
Alexander Weiss, Accemic Technologies GmbH

Martin Heininger, HEICON Global Engineering GmbH

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

Motivation
Bug-free Software is a Myth.

Trends:

• More complex integrated systems

• Software-driven safety-critical applications
(e.g. autonomous driving)

➢ Increased number of critical software defects

Software defects are a considerable cause for

• Project schedule overruns (~60%) 1

• Project budget overruns (~50%) 1

• Project cancellation (~10-20%) 2,3

• Higher maintenance costs
(Airbus study4 : Cost of a non-frequent failure: up to 500,000 €)

• Injuries, accidents, recalls

1 Gartner Research
2 Emam et al, “A Replicated Survey of IT Software Project Failures.”
3 Standish Chaos Report
4 Hanke et al, “Assessment of multi-core integration infrastructure” Munich, 2014.

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

Motivation
Bug-free Software is a Myth.

Size of SW
projects in FP

Average Defect
Potential

(Defects / FP)

Defect Removal
Efficiency

100 3,00 98%

10.000 6,25 96%

1.000.000 8,25 86%

McKinsey & Company (2018):
"Snowballing complexity is causing

significant software-related quality issues …“

* 1 FP (Function Point): ~160 LOC (C language), ~64 LOC (ADA), ~32 LOC (C++)

1 MLOC (C-Code) => 6.250 FP => ~35.000 defects => ~ 2.500 Post Release Defects

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

Motivation
Bug-free Software is a Myth.

• Challenges for embedded software architecture
• Challenges for testing
• Challenges for maintenance

Defect Removal
Efficiency decreases
with the size of SW
projects.

Average Defect
Potential increases
with the size of SW
projects.

Additional
non-deterministic defects,
caused by multicore
interferences

Increasing size
of SW projects

P
o

st
-r

e
le

as
e

d
e

fe
ct

s

Code Complexity

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

What we can do

Challenges:

• Improve development process

• Improve test effectiveness and
test efficiency

• Improve in-field analysis and
debug capabilities

• ….

Our contribution:

• Regain observation capabilities
in highly integrated multicore systems

• Enable continuous, non-intrusive
online observation and automated validation

➢ Structural coverage at higher test levels

➢ Timing analysis at higher test levels

P
o

st
-r

e
le

a
se

 d
e

fe
ct

s

Code Complexity

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

Dynamic Tests
Overview

Functional tests (black box)

Test the implementation of the

functional requirements.

Structural tests (white box)

Did my functional tests use all my code?

Low Level

High Level
Integration Tests

System Tests

Testing Techniques

Static Dynamic

StructuralFunctional

Control Flow Data Flow

Statement Coverage

Branch Coverage

MC/DC

Requirements Product

Module Tests

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

Dynamic Tests
Overview

Functional tests

Test the implementation of the

functional requirements.

Structural tests

Did my functional tests use all my code?

Low Level

High Level
Integration Tests

System Tests

Testing Techniques

Static Dynamic

StructuralFunctional

Control Flow Data Flow

Statement Coverage

Branch Coverage

MC/DC

Requirements Product

Module Tests

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

Dynamic Tests
Overview

𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑜𝑓 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

𝑜𝑓 𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠

Low Level

High Level
Integration Tests

System Tests

Testing Techniques

Static Dynamic

StructuralFunctional

Control Flow Data Flow

Statement Coverage

Branch Coverage

MC/DC

Requirements Product

Module Tests

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

Dynamic Tests
Overview

𝐵𝑟𝑎𝑛𝑐ℎ 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑜𝑓 𝐸𝑥𝑒𝑐𝑢𝑡𝑒𝑑 𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠

𝑜𝑓 𝐵𝑟𝑎𝑛𝑐ℎ𝑒𝑠

Low Level

High Level
Integration Tests

System Tests

Testing Techniques

Static Dynamic

StructuralFunctional

Control Flow Data Flow

Statement Coverage

Branch Coverage

MC/DC

Requirements Product

Module Tests

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

Dynamic Tests
Overview

MC/DC

Each condition in a decision has been shown to
independently affect that decision's outcome.

A condition is shown to independently affect a
decision's outcome by varying just that condition
while holding fixed all other possible conditions.
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010057789.pdf

Low Level

High Level
Integration Tests

System Tests

Testing Techniques

Static Dynamic

StructuralFunctional

Control Flow Data Flow

Statement Coverage

Branch Coverage

MC/DC

Requirements Product

Module Tests

https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010057789.pdf

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

Low Level

High Level
Integration Tests

System Tests

Testing Techniques

Static Dynamic

StructuralFunctional

Control Flow Data Flow

Statement Coverage

Branch Coverage

MC/DC

Requirements Product

Module Tests

Dynamic Tests
Overview

Functional tests (black box)

Test the implementation of the

functional requirements.

Structural tests (white box)

Did my functional tests use all my code?

IMPROVEMENT:

Structural tests for high-level tests.

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

High-level Structural Tests

Low Level

High Level

Testing techniques

static dynamic

structuralfunctional

control flow data flow

statement coverage

branch coverage

condition coverage

Requirements Product

Module tests

Integration tests

System tests

Module tests

Integration tests

System tests

Lo
n

g
ob

se
rv

at
io

n

N
o

 c
h

an
ge

 o
f

ti
m

in
g

b
e

h
av

io
r

N
o

 c
h

an
ge

 o
f

m
e

m
o

ry
 fo

o
tp

ri
n

t

Y

Y

N

Y

Y

Y

Y

N N SW instrumentation is perfect.

Limitations by using SW instrumentation

Limitations by using SW instrumentation

Requirements für
structural tests

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

High-level Structural Tests

Low Level

High Level

Testing techniques

static dynamic

structuralfunctional

control flow data flow

statement coverage

branch coverage

condition coverage

Requirements Product

Module tests

Integration tests

System tests

Module tests

Integration tests

System tests

Lo
n

g
ob

se
rv

at
io

n

N
o

 c
h

an
ge

 o
f

ti
m

in
g

b
e

h
av

io
r

N
o

 c
h

an
ge

 o
f

m
e

m
o

ry
 fo

o
tp

ri
n

t

Y

Y

N

Y

Y

Y

Y

N N SW instrumentation is perfect.

Limitations by using SW instrumentation

Limitations by using SW instrumentation

Requirements für
structural tests

State of the art:
Measuring code coverage
using SW instrumentation

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

High-level Structural Tests

Low Level

High Level

Testing techniques

static dynamic

structuralfunctional

control flow data flow

statement coverage

branch coverage

condition coverage

Requirements Product

Module tests

Integration tests

System tests

Module tests

Integration tests

System tests

Lo
n

g
ob

se
rv

at
io

n

N
o

 c
h

an
ge

 o
f

ti
m

in
g

b
e

h
av

io
r

N
o

 c
h

an
ge

 o
f

m
e

m
o

ry
 fo

o
tp

ri
n

t

Y

Y

N

Y

Y

Y

Y

N N SW instrumentation is perfect.

Limitations by using SW instrumentation

Limitations by using SW instrumentation

Requirements für
structural tests

New approach:
Non-intrusive and continuous

observation

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

Non-intrusive and
Continous Observation

Multi Gbps
Synchronization

Processor
(Aurix, Cortex-A,

Intel Atom, QorIQ)

Live Synchronized
Digital Twin

Live
Rule Processing

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

CEDARtools® Hardware Platform
(FPGA Board)

DuT
(Intel, ARM, PPC, Aurix)

Tr
ac

e
B

u
ff

er
 a

n
d

C
o

nc
e

n
tr

at
o

r

Trace Data
Pre-processing

and
Control Flow

Reconstruction

Branch
Counter

Branches

Source Code

Periphery
trace

Per

Mem

Mem

CPU0

CPU1

CPU2

CPUn

Instr / Data
Trace

Instr / Data
Trace

Instr / Data
Trace

Instr / Data
Trace

Branch
counts

Tr
ac

e
 P

or
t

Compiler

Configuration

Debug
Server

high-speed
serial

P
os

t
p

ro
ce

ss
in

g

Object code
coverage

Debug information

Binary

M
ap

p
in

g

Source code
coverage

Non-intrusive and
Continous Observation

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

CEDARtools® Hardware Platform
(FPGA Board)

DuT
(Intel, ARM, PPC, Aurix)

Tr
ac

e
B

u
ff

er
 a

n
d

C
o

nc
e

n
tr

at
o

r

Trace Data
Pre-processing

and
Control Flow

Reconstruction

Branch
Counter

Branches

Source Code

Periphery
trace

Per

Mem

Mem

CPU0

CPU1

CPU2

CPUn

Instr / Data
Trace

Instr / Data
Trace

Instr / Data
Trace

Instr / Data
Trace

Branch
counts

Tr
ac

e
 P

or
t

Compiler

Configuration

Debug
Server

high-speed
serial

P
os

t
p

ro
ce

ss
in

g

Object code
coverage

Debug information

Binary

M
ap

p
in

g

Source code
coverage

Non-intrusive and
Continous Observation

Live synchroniced
“digital twin”

Live branch
counter

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

High-level Structural Tests

Continuous and non-intrusive

• Statement Coverage

• Branch Coverage (EX/NEX)

• Performance measurement
(count executed instructions)

➢ Measured on object code level

➢ Measured on release code

➢ No instrumentation

➢ No limitation due to trace buffer size

Targets:

• Infineon Aurix™ (TC2xx & TC3xx),

• Arm® Cortex® -A9,

• Intel® x86 (Atom® E3950),

• NXP QorIQ® P- and T-series,

• Arm® Cortex® -A5x under development.

Low Level

High Level

Testing techniques

static dynamic

structuralfunctional

control flow data flow

statement coverage

branch coverage

condition coverage

Requirements Product

Module tests

Integration tests

System tests

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

High-level Structural Tests

Continuous and non-intrusive

• Statement Coverage

• Branch Coverage (EX/NEX)

• Performance measurement
(count executed instructions)

➢ Measured on object code level

➢ Measured on release code

➢ No instrumentation

➢ No limitation due to trace buffer size

Targets:

• Infineon Aurix™ (TC2xx & TC3xx),

• Arm® Cortex® -A9,

• Intel® x86 (Atom® E3950),

• NXP QorIQ® P- and T-series,

• Arm® Cortex® -A5x under development.

Low Level

High Level

Testing techniques

static dynamic

structuralfunctional

control flow data flow

statement coverage

branch coverage

condition coverage

Requirements Product

Module tests

Integration tests

System tests

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

High-level Structural Tests

Continuous and non-intrusive

• Statement Coverage

• Branch Coverage (EX/NEX)

• Performance measurement
(count executed instructions)

➢ Measured on object code level

➢ Measured on release code

➢ No instrumentation

➢ No limitation due to trace buffer size

Targets:

• Infineon Aurix™ (TC2xx & TC3xx),

• Arm® Cortex® -A9,

• Intel® x86 (Atom® E3950),

• NXP QorIQ® P- and T-series,

• Arm® Cortex® -A5x under development

Low Level

High Level

Testing techniques

static dynamic

structuralfunctional

control flow data flow

statement coverage

branch coverage

condition coverage

Requirements Product

Module tests

Integration tests

System tests

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

High-level Structural Tests

Continuous and non-intrusive

• Statement Coverage

• Branch Coverage (EX/NEX)

• Performance measurement
(count executed instructions)

➢ Measured on object code level

➢ Measured on release code

➢ No instrumentation

➢ No limitation due to trace buffer size

Targets:

• Infineon Aurix™ (TC2xx & TC3xx),

• Arm® Cortex® -A9,

• Intel® x86 (Atom® E3950),

• NXP QorIQ® P- and T-series,

• Arm® Cortex® -A5x under development.

Low Level

High Level

Testing techniques

static dynamic

structuralfunctional

control flow data flow

statement coverage

branch coverage

condition coverage

Requirements Product

Module tests

Integration tests

System tests

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

High-level Structural Tests
Substitution of Low-Level Structural Tests

Low Level

High Level

Testing techniques

static dynamic

structuralfunctional

control flow data flow

statement coverage

branch coverage

condition coverage

Requirements Product

Module tests

Integration tests

System tests

DO178C (6.4):

• If a test case and its corresponding test procedure are developed and executed for HW/SW
or SW integration testing and satisfy the requirements-based coverage and structural
coverage, it is not necessary to duplicate the test for low-level testing.

• Substituting nominally equivalent low-level tests for high-level tests may be less effective
due to the reduced amount of overall functionality tested.

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

High-level Structural Tests
Substitution of Low-Level Structural Tests

Low Level

High Level

Testing techniques

static dynamic

structuralfunctional

control flow data flow

statement coverage

branch coverage

condition coverage

Requirements Product

Module tests

Integration tests

System tests

Software

Low-Level

Requirements

Software

High-Level

Requirements

System

Requirements

Software

Design

Software

Architecture

System

Architecture

Implementation – Source Code

SW Unit Test

SW

Integration Test

HW/SW

Integration Test

System Test

Structural coverage✓

✓

✓

✓

Remaining structural code coverage
to be evidenced for certifications:

~ (95%-60% = 35%)

Structural code coverage
measured at high level tests: ~60%

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

High-level Structural Tests
Completeness of High-Level Tests

Low Level

High Level

Testing techniques

static dynamic

structuralfunctional

control flow data flow

statement coverage

branch coverage

condition coverage

Requirements Product

Module tests

Integration tests

System tests

Software

Low-Level

Requirements

Software

High-Level

Requirements

System

Requirements

Software

Design

Software

Architecture

System

Architecture

Implementation – Source Code

SW Unit Test

SW

Integration Test

HW/SW

Integration Test

System Test

Structural coverage

Measurable statement of
the completeness

of High-Level Tests

✓

✓

✓

✓

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

Low Level

High Level

Testing techniques

static dynamic

structuralfunctional

control flow data flow

statement coverage

branch coverage

condition coverage

Requirements Product

Module tests

Integration tests

System tests

High-level Structural Tests
at Object Code Level

PROs

• It can demonstrate full code coverage at the object code level.

• It can support more “valid” coverage.

• It is closer to the final software .

• It can be implemented with source code programming

language independence.

• It can reduce time-consuming manual analysis.

• No instrumentation is required.

• It can also be used for the objective measurement of the

quality of integration and system tests.

• It can reduce the test effort by substituting low-level tests.

• Incomplete requirements and tests are found at the system level.

T. Byun, V. Sharma, S. Rayadurgam, S. McCamant, and M. P. Heimdahl, ‘Toward Rigorous Object-Code Coverage Criteria’, in 2017
IEEE 28th International Symposium on Software Reliability Engineering (ISSRE), 2018, vol. 00, pp. 328–338.

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

Low Level

High Level

Testing techniques

static dynamic

structuralfunctional

control flow data flow

statement coverage

branch coverage

condition coverage

Requirements Product

Module tests

Integration tests

System tests

High-level Structural Tests
at Object Code Level

CONs

• Source code to object code traceability can be difficult
(depending on compiler support).

• Optimizing compiler can use difficult-to-monitor flags to process
multi-conditions. (we are working on solutions…)

• Typical tools use the source code level.

T. Byun, V. Sharma, S. Rayadurgam, S. McCamant, and M. P. Heimdahl, ‘Toward Rigorous Object-Code Coverage Criteria’, in 2017
IEEE 28th International Symposium on Software Reliability Engineering (ISSRE), 2018, vol. 00, pp. 328–338.

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

High-level Structural Tests
Key enabler: Processor Trace

Most processors provide trace infrastructure:

• ARM Cortex-A/-M/-R: CoreSight architecture

• Intel x86: IntelPT

• NXP QorIQ P-series, T-series: Debug Assist Module

• Infineon Aurix: Emulation Device

Trace date consists of high-bandwidth information for reconstruction of

• Control flow,

• OS related events (task changes),

• Data access (address, value),
and hardware-supported instrumentation: printf() replacement by simple MOV command.

Hardware-based monitoring infrastructure is integrated in most processors –
and is already paid by you …

Mind trace interface access opportunities:

- in your hardware system requirement specifications and

- in your SoC architecture decision!

CEDARtools® Hardware Platform
(FPGA Board)

DuT
(Intel, ARM, PPC, Aurix)

T
ra

ce
 B

u
ff

e
r

a
n

d
 C

o
n

ce
n

tr
a

to
r

Trace Data
Pre-processing

and
Control Flow

Reconstruction

Branch
Counter

Branches

Source Code

Periphery
trace

Per

Mem

Mem

CPU0

CPU1

CPU2

CPUn

Instr / Data
Trace

Instr / Data
Trace

Instr / Data
Trace

Instr / Data
Trace

Branch
counts

T
ra

ce
 P

o
rt

Compiler

Configuration

Debug
Server

high-speed
serial

P
o

st
 p

ro
ce

ss
in

g

Object code
coverage

Debug information

Binary

M
a

p
p

in
g

Source code
coverage

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

Bug-free Software is a Myth.
But there's something we can do.

Contact:

Accemic Technologies GmbH

Franz-Huber-Str. 39

83088 Kiefersfelden

www.accemic.com

Dr.-Ing. Alexander Weiss

aweiss@accemic.com

+49 8033 6039795

P
o

st
-r

e
le

a
se

 d
e

fe
ct

s

Code ComplexityLow Level

High Level
Integration Tests

System Tests

Testing Techniques

Static Dynamic

StructuralFunctional

Control Flow Data Flow

Statement Coverage

Branch Coverage

MC/DC

Requirements Product

Module Tests

http://www.accemic.com/
mailto:aweiss@accemic.com

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

Backup slides

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

FORMAL
VERIFICATION
Exploring the
state space
by checking

all paths

TESTING
Exploring the
state space
by checking
likely paths

Runtime Analysis
Exploring the state space

by checking
actual paths

b
e

fo
re

 d
e

p
lo

y
m

e
n

t
in

 d
e

p
lo

y
m

e
n

t

Not all elements
can be modelled

Not all paths can be
executed during tests

Runtime Analysis

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

Runtime Analysis
Timing Analysis

Low Level

High Level

Testing techniques

static dynamic

structuralfunctional

control flow data flow

statement coverage

branch coverage

condition coverage

Requirements Product

Module tests

Integration tests

System tests

Live processing
of event streamsLive synchroniced

“digital twin”

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

Runtime Analysis
Timing Analysis

• High-level specification language

• Hardware-supported event processing

• Multiple constraints can be checked in parallel

User specific constraints
specification

(XML, Excel, ...)

Automotive domain constraints
specification

(AUTOSAR TIMEX, Amalthea, ...)

Requirement & Test specifications

Hardware supported
event processing

(~100M Events/s)

-

(see tessla.io)

http://www.tessla.io/

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

Runtime Analysis
Timing Analysis

ECU

Processor

C code

Binary

C compiler

read_brake_sensor();

activate_brakes();

< 5ms

•Use case: Safety-critical application to control
brakes

•Requirement:
•Ensure Timing Constraint from

pressing the brakes, until their activation
•Constraint: Should react within 5ms!

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

Runtime Analysis
Timing Analysis

ECU

Processor

C code

Binary

C compiler

read_brake_sensor();

activate_brakes();

test specificationen

< 5ms

in read_brake_sensor : Events[Unit]

in activate_brakes : Events[Unit]

def latency : Events[Int] := calc_latency(read_brake_sensor, activate_brakes)

def test_passed : Events[Bool] := if (latency < 5ms) then true else false

•Use case: Safety-critical application to control
brakes

•Requirement:
•Ensure Timing Constraint from

pressing the brakes, until their activation
•Constraint: Should react within 5ms!

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

Runtime Analysis
Timing Analysis

ECU

Processor

CEDARtools®

digital twin
trace
data

Code coverage

Timing analysis

C code

Binary

C compiler

read_brake_sensor();

activate_brakes();

TeSSLa
compiler

debug
information

analysis task

test specificationen

< 5ms

in read_brake_sensor : Events[Unit]

in activate_brakes : Events[Unit]

def latency : Events[Int] := calc_latency(read_brake_sensor, activate_brakes)

def test_passed : Events[Bool] := if (latency < 5ms) then true else false

test_passed

© 2020 Accemic Technologies GmbH.
The pioneer in embedded systems dynamic analysis.
Automated, non-intrusive and continuous.

Runtime Analysis
Timing Analysis

https://www.youtube.com/watch?v=3AYVWK-X9nw&feature=youtu.be

https://www.youtube.com/watch?v=3AYVWK-X9nw&feature=youtu.be

