
www.embedded-world.eu

Non-intrusive Software Coverage Estimation
for Safety-Critical System Certification

Martin Heininger

CEO

HEICON – Global Engineering GmbH

Schwendi, Germany

martin.heininger@heicon-ulm.de

Rainer Makowitz

CMO

Accemic Technologies GmbH

Kiefersfelden, Germany

Abstract— Proof of functional safety requires the collection of

structural coverage information to confirm that the structural

coverage is appropriate for the required safety level.

A new observation methodology based on processor traces

provides the key means to gain non-intrusive insight into the

execution of production code for multi-core SoCs. Trace data

analysis must be automated to cope with the enormous bandwidth

of trace data streams.

This new technique supports certification of test coverage and

enables automated detection of emerging timing constraints. Most

importantly, it allows structural tests to be executed on the basis

of the production code without the need for software

instrumentation.

The paper provides an overview of the applicable functional

safety standards, explains the advantages of executing structural

tests even at higher test levels, and gives practical hints for

hardware and software architecture considerations for providing

best observability for executing structural tests.

Non-intrusive, Functional Safety, structural Software Coverage,

Data- and Control flow, Requirement Coverage, Certification

I. INTRODUCTION

Assessment and Certification of Safety-Critical Systems are
based on functional safety standards, like ISO 26262 [1]
(Automotive), EN 50128 [2] (Railway), IEC 61508 [3]
(Industrial Automation), ISO 25119 [4] (Agriculture and
forestry), DO 178C (Aerospace) and others. Each of the
standards defines 4 to 5 levels of criticality.

The goal of all standards is, to minimize the failures in
safety-critical systems. There are two types of failures which
have to be distinguished:

• Failures due to random hardware faults

• Failures due to systematic hardware and software faults

For random hardware faults the standards define several
constructive measures which are able to detect this failure type
and move the system in a safe state.

For systematic faults the functional safety standards define
techniques and measures, which have to be applied during the
development, to minimize these failures in the field to an
acceptable minimum.

For critical systems the functional safety standards mandate
a very high quality of the testing strategy which is traditionally
assessed by structural code coverage tests [5]. Key coverage
metric targets are 100% structural source code coverage and the
completeness of a data- and control flow analysis. Both
measures have for many years been required by the safety
standards. However, there have been several drawbacks with the
implementation of each of the measures, mainly due to
technological limitations.

Our new non-intrusive system observation technology [7]
provides for the first time new opportunities for the usage of both
measures.

In the following sections we address first the structural code
coverage measure. In the following section we discuss data- and
control flow analysis and how it can be improved using our new
methodology.

II. STRUCTURAL SOURCE CODE COVERAGE

A. Introduction of structural source code coverage

The structural source code coverage provides a figure about
the coverage of the source code structure by executed tests.
There are different kind of coverage measures possible [6]. The
coverage of the executable source code statements is very often
used. This means that each source code statement has to be
executed to achieve 100% coverage.

The well-known MC/DC Coverage (Modified
Condition/Decision) proves that each variable within a condition
has an effect on the result of the decision. The minimum number
of test cases required is the number of variables in a condition
+1.

The following figure 1 illustrates test cases to achieve MC/DC
coverage:

Fig. 1. MC/DC Coverage example

In test case 3 and 4 variables A, and B are kept constant, only
C is changing. As the decision is changed from
do_something_else to do_something, these two test cases prove
that C does have an impact on the decision.

In test cases 2 and 6 B and C are constant and A is changing.
These test cases prove that A does have an impact on the result.

In test cases 2 and 4 A and C are constant and B is changing.
That’s the prove that B does have an impact on the result.

B. Pros and Cons of structural coverage measurement in

practical work

Across the relevant industries, it has become clear in recent
years that White-box testing (a method of software testing that
tests internal structures or workings of an application) and the
simple measurement of structural coverage is not overly
meaningful as an assessment of the quality of the software test
strategy [6]. This is even true in cases where 100% MC/DC
coverage has been reached. Here is the reason why:

Tests that only aim to measure structural coverage find
hardly any errors of functional behavior. Obviously, good tests
always verify the intended functionality. Most of the faults
originate in the (mis-) understanding of the intended
functionality (defined by the customer – not by the software
structure itself). Practice shows that significantly more failures
are found by Black-box testing (a method of software testing that
examines the functionality of an application without peering into
its internal structures or workings) where the tests are based on
requirements [6].

Requirements-based testing, however, has its own weakness:
the definition of completeness in requirement engineering.
Completeness metrics are very difficult to achieve for
requirements. It is generally accepted that it is practically
impossible to create 100% complete requirements [6]. The same
applies for the test of software intensive systems. Creating tests
that achieve 100% coverage of functionality is not possible.

Test methods like equivalence class testing are introduced,
in order to cover as many aspects of the system as possible and
derive the test cases in a systematic way. Such methods support
the tester to decide when a sufficient test coverage is achieved
but up to now coverage is typically far below 100% [6].

After all, the strength of the structural source code coverage
is the determination of the 100% coverage because it can be
enumerated in the test program.

This situation has driven the aerospace industry to emphasize
the measurement of structural test coverage [6]. The basic idea

is to create requirements-based tests and observe the structural
coverage of such tests.

The measurement of structural coverage represents a
meaningful quality statement about the software only if
requirements are considered during test creation. As it is
practically impossible to create complete requirements and
corresponding tests for a system, structural coverage is a very
efficient corrective for this methodological weakness.

If the tests are requirements-based, then a low structural
coverage can have only one of the following three root causes:

1. the requirements are not complete

2. the tests are not complete

3. the uncovered source code is not needed at all (dead code)

Tests which are measuring the structural coverage are not an
independent test method in contrast to the requirement-based
tests. It’s the combination of both in the same test, which is most
beneficial.

C. Non-intrusive Coverage measurement strengthen the

structural coverage measurement

As explained above, pure White-box tests don’t guarantee

intended system behavior and there is a desire to measure the

structural coverage at higher test levels in the V-diagram, as this

would allow to create tests based on functional requirements

and measure the structural coverage that these tests achieve. In

Embedded Systems, this is typically the level at which the

hardware and software are tested -- the integration test. Only for

this test level meaningful functional requirements can be

formulated with reasonable effort.

However, up to now there was no technology to determine

the structural source code coverage with a reasonable effort at

higher test levels. This is where non-intrusive observation of

program and data flow is changing the picture.

Assisted by the availability of high-bandwidth trace ports in

most high-performance microprocessors [ARM, INTEL, NXP]

a new class of analysis tools is emerging. Developed in the

context of several German and European funded research

projects we have developed the CEDARtools platform that is

capable of reconstructing processor instruction and data flow in

real-time in live equipment. Non-intrusive measurement of

structural source code coverage is one of the derived

capabilities of this system and it is very likely that it will replace

the classic source code instrumentation in the next years.

Structural source code coverage can play a completely new role

in safety-relevant software development.
So far many believe that structural coverage should and

could only be determined in white-box tests. In many textbooks,
the measurement of structural source code coverage is even
promoted as an independent test method. With our non-intrusive
measurement of structural coverage we make this methodology
universally useful on all test levels.

The non-intrusive system observation technology can also

increase the quality of other software techniques and measures,

like the data- and control flow analysis.

www.embedded-world.eu

III. COMPLETING REQUIREMENT BY USE OF DATA- AND

CONTROL FLOW ANALYSIS RESULTS

Carrying out a data- and control flow analysis is required in
almost all functional safety standards (ISO 26262-6 [1] Table 7
measures 1f/g, DO 178C [7] Table A-7 measure 8 and EN 50128
[2] Table A19 measures 3/4). Most of the functional safety
software projects are challenged by performing the data- and
control flow analysis. The reason is, that a proper data- and
control flow analysis requires tool support, but the available
tools on the market are not providing all the information
required.

The goal of the data- and control flow analysis is to proof
that the specified data- and control flows in architecture are
correctly implemented in the source code.

A. Definition of data- and control flow

Wikipedia defines the data flow analysis [9 as follows: Data-
flow analysis is a technique for gathering information about the
possible set of values calculated at various points in a computer
program. A program's control flow graph (CFG) is used to
determine those parts of a program to which a particular value
assigned to a variable might propagate.

In contrast control flow analysis is defined loosely as [10] a
static-code-analysis technique for determining the control flow
of a computer program; where control flow (or flow of control)
is the order in which individual statements, instructions or
function calls of an imperative program are executed or
evaluated.

Very often there is a close coupling between data flow and
control flow. An example is the error handling within a software:

Requirement SW-1: A error message TRG4 shall be send
from ECU 1 to ECU 2 and the software of ECU 1 shall initiate
the switch off the ECU 1 in case the battery voltage represented
in a float value is above 14 Volt. In case the battery voltage is
within an accepted range (9 V to 14V) the software shall
continue with normal operation.

In this example the control flow depends on the content of
the float value. Moreover, the example shows that there is also a
relationship between the data- and control flow and the
functional requirements.

B. Challenges of data- and control flow analysis

As shown above, it is very difficult in a practical application
to clearly separate data flow and control flow.

In addition, software tends to have an infinite number of
data- and control flows. A complete proof of the correctness of
all data- and control flows is impossible.

Most importantly, dynamic verification of data- and control
flows is today very challenging due to technical constraints. In
the Aerospace industry unit tests and software integration tests
have been used most of the time to verify important data- and
control flow requirements. However, since these tests are not
performed with the real hardware, no data- and control flows
could be verified under stress conditions for the entire embedded
system. Also, for time-critical applications, which represent the
majority of embedded systems, these proofs are difficult.

C. Non-intrusive system observation

The non-intrusive system observation offers the possibility

to monitor software parameters and simultaneously other

external and internal events without influencing the behavior of

the system. Such tests can be fully automated.

Since these tests also prove the functional software

requirements, the non-intrusive system observation technology

supports the completeness check of requirements. This is due to

the fact that important data- and control flows are reflected in

the functionality of the software. And the functionality of the

system is defined in the requirements.

With the current technologies, the results of the data- and

control flow analysis are decoupled from the functional

requirements, as the unit test and a static analysis do not test

functional requirement. The non-intrusive system observation

proofs the data- and control flow with hardware/software

integration tests. Equally these are the tests which also proof the

functional software requirements. Tests which are only derived

from data- and control flow analysis may demonstrate a gap in

the requirements.

D. Activity diagrams specify data and control flows

The new possibilities, that result from non-intrusive system

observation, also draw attention to a further weakness of the

existing development approach. As there are almost an infinite

number of data- and control flows in a software, it’s not possible

to define and document all flows in the architecture.

Furthermore, it is not a simple task to identify and specify the

most important data- and control flows.

With the new opportunities offered by non-intrusive system

observation technology, this more effort will be spent to address

this weakness. Both the systematic proof of the data- and

control flows by test, as well as the closing of existing

functional specification gaps are only successful if at least the

most important data- and control flows are defined in the

software architecture. A promising solution are activity

diagrams that result from a systematic description of the

software architecture in UML [6].

IV. CONCLUSION

Most of the functional safety standards define the structural

source code coverage and the data- and control flow analysis as

important techniques in the software development to minimize

systematic software faults.

Performing a meaningful data- and control flow analysis

and structural source code measurement is a challenge, as the

available tools cannot fully support these two techniques.

Non-intrusive system observation enables the execution of

the data- and control flow analysis and the measurement of the

structural coverage within the integrated embedded system. As

a consequence, non-intrusive system observation will support a

combined completeness check of the functional and

performance requirements.

REFERENCES

[1] International Organization for Standardization Std., „ISO 26262:2018.

Road vehicles – Functional safety“. 2018.

[2] European Commitee for Electrotechnical Standardization, „EN

50128:2011 Railway applications - Communication, signalling and
processing systems - Software for railway control and protection

systems“. 2011.

[3] British Standard, „EN 61508:2011 Functional safety of
electrical/electronic/programmable electronics safety related systems“.

2011.

[4] International Organization for Standardization Std., „ISO 25119:2018
Tractors and machinery for agriculture and forestry - Safety related parts

of control systems -“. 2018.

[5] „Accemic“. [Online]. http://accemic.com/. [17-Jan-2020].
[6] „Heininger, Martin: Professional experience of the author, resulting

from 20+ years in consulting“. .

[7] EUROCAE, „ED-12C - Software Considerations in Airborne Systems
and Equipment Certification“. 2011.

[8] „Wikipedia, data flow analysis“. [Online].

https://en.wikipedia.org/wiki/Data-flow_analysis. [17-Jan-2020].
[9] „Wikipedia, control flow“. [Online]. Verfügbar unter:

https://en.wikipedia.org/wiki/Control_flow. [17-Jan-2020].

	I. Introduction
	II. Structural Source Code Coverage
	A. Introduction of structural source code coverage
	B. Pros and Cons of structural coverage measurement in practical work
	C. Non-intrusive Coverage measurement strengthen the structural coverage measurement

	III. Completing requirement by use of data- and control flow analysis results
	A. Definition of data- and control flow
	B. Challenges of data- and control flow analysis
	C. Non-intrusive system observation
	D. Activity diagrams specify data and control flows

	IV. Conclusion
	References

