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Abstract— Proof of functional safety requires the collection of 

structural coverage information to confirm that the structural 

coverage is appropriate for the required safety level. 

A new observation methodology based on processor traces 

provides the key means to gain non-intrusive insight into the 

execution of production code for multi-core SoCs. Trace data 

analysis must be automated to cope with the enormous bandwidth 

of trace data streams. 

This new technique supports certification of test coverage and 

enables automated detection of emerging timing constraints. Most 

importantly, it allows structural tests to be executed on the basis 

of the production code without the need for software 

instrumentation. 

The paper provides an overview of the applicable functional 

safety standards, explains the advantages of executing structural 

tests even at higher test levels, and gives practical hints for 

hardware and software architecture considerations for providing 

best observability for executing structural tests. 
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I.  INTRODUCTION 

Assessment and Certification of Safety-Critical Systems are 
based on functional safety standards, like ISO 26262 [1] 
(Automotive), EN 50128 [2] (Railway), IEC 61508 [3] 
(Industrial Automation), ISO 25119 [4] (Agriculture and 
forestry), DO 178C (Aerospace) and others. Each of the 
standards defines 4 to 5 levels of criticality.  

The goal of all standards is, to minimize the failures in 
safety-critical systems. There are two types of failures which 
have to be distinguished: 

• Failures due to random hardware faults 

• Failures due to systematic hardware and software faults 

For random hardware faults the standards define several 
constructive measures which are able to detect this failure type 
and move the system in a safe state. 

For systematic faults the functional safety standards define 
techniques and measures, which have to be applied during the 
development, to minimize these failures in the field to an 
acceptable minimum. 

For critical systems the functional safety standards mandate 
a very high quality of the testing strategy which is traditionally 
assessed by structural code coverage tests [5]. Key coverage 
metric targets are 100% structural source code coverage and the 
completeness of a data- and control flow analysis. Both 
measures have for many years been required by the safety 
standards. However, there have been several drawbacks with the 
implementation of each of the measures, mainly due to 
technological limitations. 

Our new non-intrusive system observation technology [7] 
provides for the first time new opportunities for the usage of both 
measures. 

In the following sections we address first the structural code 
coverage measure. In the following section we discuss data- and 
control flow analysis and how it can be improved using our new 
methodology. 

II. STRUCTURAL SOURCE CODE COVERAGE 

A. Introduction of structural source code coverage 

The structural source code coverage provides a figure about 
the coverage of the source code structure by executed tests. 
There are different kind of coverage measures possible [6]. The 
coverage of the executable source code statements is very often 
used. This means that each source code statement has to be 
executed to achieve 100% coverage. 

The well-known MC/DC Coverage (Modified 
Condition/Decision) proves that each variable within a condition 
has an effect on the result of the decision. The minimum number 
of test cases required is the number of variables in a condition 
+1. 

The following figure 1 illustrates test cases to achieve MC/DC 
coverage: 



 

Fig. 1. MC/DC Coverage example 

In test case 3 and 4 variables A, and B are kept constant, only 
C is changing. As the decision is changed from 
do_something_else to do_something, these two test cases prove 
that C does have an impact on the decision. 

In test cases 2 and 6 B and C are constant and A is changing. 
These test cases prove that A does have an impact on the result. 

In test cases 2 and 4 A and C are constant and B is changing. 
That’s the prove that B does have an impact on the result. 

 

B. Pros and Cons of structural coverage measurement in 

practical work 

Across the relevant industries, it has become clear in recent 
years that White-box testing (a method of software testing that 
tests internal structures or workings of an application) and the 
simple measurement of structural coverage is not overly 
meaningful as an assessment of the quality of the software test 
strategy [6]. This is even true in cases where 100% MC/DC 
coverage has been reached. Here is the reason why: 

Tests that only aim to measure structural coverage find 
hardly any errors of functional behavior. Obviously, good tests 
always verify the intended functionality. Most of the faults 
originate in the (mis-) understanding of the intended 
functionality (defined by the customer – not by the software 
structure itself). Practice shows that significantly more failures 
are found by Black-box testing (a method of software testing that 
examines the functionality of an application without peering into 
its internal structures or workings) where the tests are based on 
requirements [6].  

Requirements-based testing, however, has its own weakness: 
the definition of completeness in requirement engineering. 
Completeness metrics are very difficult to achieve for 
requirements.  It is generally accepted that it is practically 
impossible to create 100% complete requirements [6]. The same 
applies for the test of software intensive systems. Creating tests 
that achieve 100% coverage of functionality is not possible.  

Test methods like equivalence class testing are introduced, 
in order to cover as many aspects of the system as possible and 
derive the test cases in a systematic way. Such methods support 
the tester to decide when a sufficient test coverage is achieved 
but up to now coverage is typically far below 100% [6]. 

After all, the strength of the structural source code coverage 
is the determination of the 100% coverage because it can be 
enumerated in the test program.  

This situation has driven the aerospace industry to emphasize 
the measurement of structural test coverage [6]. The basic idea 

is to create requirements-based tests and observe the structural 
coverage of such tests. 

The measurement of structural coverage represents a 
meaningful quality statement about the software only if 
requirements are considered during test creation. As it is 
practically impossible to create complete requirements and 
corresponding tests for a system, structural coverage is a very 
efficient corrective for this methodological weakness.  

If the tests are requirements-based, then a low structural 
coverage can have only one of the following three root causes:  

1. the requirements are not complete 

2. the tests are not complete 

3. the uncovered source code is not needed at all (dead code) 

Tests which are measuring the structural coverage are not an 
independent test method in contrast to the requirement-based 
tests. It’s the combination of both in the same test, which is most 
beneficial. 

C. Non-intrusive Coverage measurement strengthen the 

structural coverage measurement 

As explained above, pure White-box tests don’t guarantee 

intended system behavior and there is a desire to measure the 

structural coverage at higher test levels in the V-diagram, as this 

would allow to create tests based on functional requirements 

and measure the structural coverage that these tests achieve. In 

Embedded Systems, this is typically the level at which the 

hardware and software are tested -- the integration test. Only for 

this test level meaningful functional requirements can be 

formulated with reasonable effort.  

However, up to now there was no technology to determine 

the structural source code coverage with a reasonable effort at 

higher test levels. This is where non-intrusive observation of 

program and data flow is changing the picture. 

Assisted by the availability of high-bandwidth trace ports in 

most high-performance microprocessors [ARM, INTEL, NXP] 

a new class of analysis tools is emerging. Developed in the 

context of several German and European funded research 

projects we have developed the CEDARtools platform that is 

capable of reconstructing processor instruction and data flow in 

real-time in live equipment. Non-intrusive measurement of 

structural source code coverage is one of the derived 

capabilities of this system and it is very likely that it will replace 

the classic source code instrumentation in the next years. 

Structural source code coverage can play a completely new role 

in safety-relevant software development.  
So far many believe that structural coverage should and 

could only be determined in white-box tests. In many textbooks, 
the measurement of structural source code coverage is even 
promoted as an independent test method. With our non-intrusive 
measurement of structural coverage we make this methodology 
universally useful on all test levels. 

The non-intrusive system observation technology can also 

increase the quality of other software techniques and measures, 

like the data- and control flow analysis. 
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III. COMPLETING REQUIREMENT BY USE OF DATA- AND 

CONTROL FLOW ANALYSIS RESULTS 

Carrying out a data- and control flow analysis is required in 
almost all functional safety standards (ISO 26262-6 [1] Table 7 
measures 1f/g, DO 178C [7] Table A-7 measure 8 and EN 50128 
[2] Table A19 measures 3/4). Most of the functional safety 
software projects are challenged by performing the data- and 
control flow analysis. The reason is, that a proper data- and 
control flow analysis requires tool support, but the available 
tools on the market are not providing all the information 
required.  

The goal of the data- and control flow analysis is to proof 
that the specified data- and control flows in architecture are 
correctly implemented in the source code. 

A. Definition of data- and control flow 

Wikipedia defines the data flow analysis [9 as follows: Data-
flow analysis is a technique for gathering information about the 
possible set of values calculated at various points in a computer 
program. A program's control flow graph (CFG) is used to 
determine those parts of a program to which a particular value 
assigned to a variable might propagate. 

In contrast control flow analysis is defined loosely as [10] a 
static-code-analysis technique for determining the control flow 
of a computer program; where control flow (or flow of control) 
is the order in which individual statements, instructions or 
function calls of an imperative program are executed or 
evaluated. 

Very often there is a close coupling between data flow and 
control flow. An example is the error handling within a software: 

Requirement SW-1: A error message TRG4 shall be send 
from ECU 1 to ECU 2 and the software of ECU 1 shall initiate 
the switch off the ECU 1 in case the battery voltage represented 
in a float value is above 14 Volt. In case the battery voltage is 
within an accepted range (9 V to 14V) the software shall 
continue with normal operation. 

In this example the control flow depends on the content of 
the float value. Moreover, the example shows that there is also a 
relationship between the data- and control flow and the 
functional requirements. 

B. Challenges of data- and control flow analysis 

As shown above, it is very difficult in a practical application 
to clearly separate data flow and control flow.  

In addition, software tends to have an infinite number of 
data- and control flows. A complete proof of the correctness of 
all data- and control flows is impossible.  

Most importantly, dynamic verification of data- and control 
flows is today very challenging due to technical constraints. In 
the Aerospace industry unit tests and software integration tests 
have been used most of the time to verify important data- and 
control flow requirements. However, since these tests are not 
performed with the real hardware, no data- and control flows 
could be verified under stress conditions for the entire embedded 
system. Also, for time-critical applications, which represent the 
majority of embedded systems, these proofs are difficult.  

 

C. Non-intrusive system observation 

The non-intrusive system observation offers the possibility 

to monitor software parameters and simultaneously other 

external and internal events without influencing the behavior of 

the system. Such tests can be fully automated.  

Since these tests also prove the functional software 

requirements, the non-intrusive system observation technology 

supports the completeness check of requirements. This is due to 

the fact that important data- and control flows are reflected in 

the functionality of the software. And the functionality of the 

system is defined in the requirements.  

With the current technologies, the results of the data- and 

control flow analysis are decoupled from the functional 

requirements, as the unit test and a static analysis do not test 

functional requirement. The non-intrusive system observation 

proofs the data- and control flow with hardware/software 

integration tests. Equally these are the tests which also proof the 

functional software requirements. Tests which are only derived 

from data- and control flow analysis may demonstrate a gap in 

the requirements. 

 

D. Activity diagrams specify data and control flows 

The new possibilities, that result from non-intrusive system 

observation, also draw attention to a further weakness of the 

existing development approach. As there are almost an infinite 

number of data- and control flows in a software, it’s not possible 

to define and document all flows in the architecture. 

Furthermore, it is not a simple task to identify and specify the 

most important data- and control flows.  

With the new opportunities offered by non-intrusive system 

observation technology, this more effort will be spent to address 

this weakness. Both the systematic proof of the data- and 

control flows by test, as well as the closing of existing 

functional specification gaps are only successful if at least the 

most important data- and control flows are defined in the 

software architecture. A promising solution are activity 

diagrams that result from a systematic description of the 

software architecture in UML [6]. 

 

IV. CONCLUSION 

Most of the functional safety standards define the structural 

source code coverage and the data- and control flow analysis as 

important techniques in the software development to minimize 

systematic software faults.  

Performing a meaningful data- and control flow analysis 

and structural source code measurement is a challenge, as the 

available tools cannot fully support these two techniques. 

Non-intrusive system observation enables the execution of 

the data- and control flow analysis and the measurement of the 

structural coverage within the integrated embedded system. As 

a consequence, non-intrusive system observation will support a 

combined completeness check of the functional and 

performance requirements. 
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