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Abstract—Structural testing is an important acceptance crite-
rion for safety-critical embedded and cyber-physical systems (as in
Aerospace, Transport, and Critical Infrastructure). The coverage
of both all specified requirements and, vice versa, all code to be
deployed makes testing very difficult and costly. We elaborate on
a solution that validates the conclusiveness of high-level functional
tests on fully-integrated safety-critical applications in a non-
intrusive fashion. Our approach performs an online analysis of
hardware processor trace data in real-time to establish coverage
proofs on-the-fly during test runs. It offers deep insights into the
completeness of both the tests and their underlying requirements.
Establishing the validity of tests on a high functional level reduces
the effort enormously that is required on lower, less integrated
levels to achieve and justify conclusive coverage statements. The
savings achieved by our approach in the development process will
be demonstrated and quantified.

Index Terms—Processor Execution Trace, Online Monitoring,
Structural Tests, Requirements-Based Tests

I. INTRODUCTION

The continuously increasing complexity, even in the domains

of safety-critical and cyberphysical systems, pushes the number

of defects, many of which are only observed after the release

of a product. Fighting this late and most costly manifestation

of defects, the use of more capable, thorough methods on

higher test levels helps to establish and maintain economically

competitive and effective test procedures.

Both the measurement of the structural test coverage and the

automated runtime analysis during the execution of functional

integration and system tests are powerful testing instruments.

Their associated requirement for comprehensive and continu-

ous system observability, however, poses difficult challenges.

Classic software instrumentation manipulates the application

under test, heavily impacting its timing behavior so that the

confidence in the test is reduced or the test itself becomes

unfeasible on higher test levels. Solutions based on hardware

execution traces can avoid the massively intrusive instrumen-

tation of the tested application. However, they are currently

limited to snapshots over short time spans. This harshly limits

their capability to derive conclusive statements about tests

executed on higher, more integrated levels.

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
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It is the live online analysis of execution trace data which

enables the non-intrusive continuous monitoring of test runs to

establish desired test properties. In order to be able to use this

technical option, high-bandwidth access to the trace data output

by the processor must be available, and adjustments must be

made to the software architecture. This paper describes such a

hardware solution and its corresponding testing workflow.

The remainder of this paper will first motivate the increasing

demand for capable test procedures in Sec. II. Sec. III will

continue by giving an overview of the state of the art with

a strong focus on coverage metrics and their current dynamic

measurement approaches. The proposed live analysis of the

execution trace will be introduced in Sec. IV, which will name

the specific challenges this approach has to master and discuss

the opportunities provided by this novel capability in detail with

a strong focus on coverage measurements. Finally, Sec. V will

list the enabling design requirements that need to be considered

in the architecture of a system platform that is to benefit from

the described opportunities before Sec. VI concludes the paper.

II. MOTIVATION

Embedded systems are becoming increasingly powerful and

complex. This is accompanied by the unpleasant fact that

the relative error probability of software increases with its

complexity [1]: The more code, the disproportionately more

defects are initially present in the software and the worse is the

efficiency of error correction. With the increasing use of mul-

ticore and networked multiprocessor systems as well as third-

party software components, more and more non-deterministic

error patterns, which are difficult to reproduce, are added.

Assuming an error correction ratio of about 95% during the

development process [1], a proud 5% of defects remain in

the release code - in absolute numbers, this can mean several

thousand defects. Nobody has to be ashamed of this, even

NASA has this problem during their missions [2].

McKinsey & Company 2018 [3]:

“Snowballing complexity is causing significant

software-related quality issues, as evidenced by mil-

lions of recent vehicle recalls.”

These errors range from errors in the requirements spec-

ification over trivial implementation defects all the way to
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complex, non-deterministic error patterns. Due to missing or

overly simplified models, static analysis quickly reaches its

limits, so that the dynamic analysis of embedded systems

becomes increasingly important.

The freedom from defects is an illusion although this ideal

should be the goal of any serious project management (not

only) in the embedded area. In addition to a well-thought-out

system architecture and good implementation, (a) tests that are

as complete as possible and (b) precautions for dealing with

errors in the field are important prerequisites for being able to

develop and market a product on time and in the best possible

quality.

III. STATE OF THE ART

A. Structural Coverage Criteria

The standards for the development of safety-critical sys-

tems, such as DO-178C [4] and ISO 26262:2018 [5], define

concrete requirements for the test process, the test techniques

to be applied and the proof of the completeness of these

tests (structural coverage). Depending on the criticality of the

application, it must be demonstrated as completely as possible

that all instructions (statement coverage), all branches (branch
coverage) or all relevant combinations of conditions (MC/DC)

were used during the tests. The standards leave it largely open,

on which test level the measurement of structural coverage are

performed.

In addition, there is a structural test criterion, data flow

coverage and the analysis of the coupling of data and control

flow, which has been largely neglected up to now [6]. Although

these test criteria are only dealt with in passing and not

very specifical in various standards, they appear to us to be

an essential supplement to the measurement of control flow

coverage.

In current practice, the proof of structural coverage is usually

provided by means of ”hand-tailored” functional tests on the

module test level. This is often accepted as proof for the test

completeness as required by the standards. However, structural

tests should not serve the purpose of being able to hand over

impressive reports to the certification authorities but should

demonstrate the completeness of the conducted functional tests

so as to raise test confidence and enable an effective hunt for

the many defects still present in the system.

Therefore, we advocate (a) the measurement of structural test

coverage during the execution of integration and system tests

and (b) the measurement of the coupling of data and control

flow.

The measurement of structural test coverage during the

execution of higher-level (functional) tests (HLT) has the great

advantage that an exact statement about the completeness of

these tests can be made. For non-executed program code, it

must be determined why it has not been reached by the test. In

some cases, one will come to the conclusion that this code can

only be checked on module test level but regularly, also HLT

gaps will be revealed. Since large parts of the program code

have already been exercised by the execution of HLTs, it is no

longer necessary to generate and document the corresponding

tests on the module test level for the purpose of a test coverage

proof.

The dynamic measurement of the coupling of data and con-

trol flow provides another powerful test completeness criterion.

For each variable, the test must show that it is initialized and

later used (def-use pair). Just as the structural control flow

coverage provides a statement about the completeness of tests

on the control flow level, a similar statement can thus be

achieved for the data flow.

B. Software Instrumentation

Software instrumentation adds code to the application that

logs the execution of the program during a test or a debug

run. The program code can be instrumented automatically by

using off-the-shelf tools. However, integration and system tests,

which examine the interaction of components, lose their validity

and confidence as they are based on an altered application with

a different memory layout and a changed temporal behavior

during execution.

C. Offline Analysis of Embedded Trace

Almost all modern processors have a standardized embedded

trace unit (e.g. ARM® CoreSight [7], Intel® Processor Trace

[8], Infineon ED [9], NXP QorIQ® [10]). This unit outputs in-

formation about the executed program flow without influencing

it. Depending on the architecture and trace configuration, the

temporal behavior and data accesses can also be reconstructed.

In addition, further units can support a lightweight hardware-

supported instrumentation (which is therefore acceptable in

release code) as well as the tracing of peripheral units (memory

controllers, communication units [11]).

In classic embedded trace solutions, the high-bandwidth trace

data (several Gbit/s) is usually stored in a buffer memory. After

the end of the test run, the program flow is reconstructed on

a PC to determine, for example, the structural coverage. The

limits of this procedure are the observation time, which is

constrained by the available buffer memory, and the additional

computing time required for the offline reconstruction of the

program flow.

Although the concrete trace protocols of different processor

architectures differ, they always convey all the information that

is necessary for the reconstruction of the program control flow.

IV. LIVE ANALYSIS OF EMBEDDED TRACE

A. Challenges

The live analysis of the execution trace at run time is a

quantum leap enhancement over the offline analysis of the

recorded trace data as it effectively eliminates the bottlenecks

imposed by the need for the intermediate buffering. However,

there are two major technical challenges to be overcome:

1) The highly compressed trace data stream must be de-

compressed and the control flow of the CPU(s) must be
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Fig. 1. Overview of the Live Structural Coverage Measurement Flow

reconstructed. This demanding computation must often

cope with the execution trace from multiple fast CPUs

that are running at nominal clock frequencies above

1 GHz. This decoding may further be challenged by

additional abstractions and indirections introduced by

different operating systems.

2) The reconstructed control flow must be analyzed into an

apt event stream abstraction that is suitable to drive the

desired of various possible backend task. For example,

(a) branch information for the coverage analysis may be

recorded or (b) dynamic properties over the event stream

may be computed and validated against a temporal logic

specification.

The live analysis of trace data over arbitrarily long program

runs enables (a) the measurement of the control flow coverage

during the execution of HLTs, as well as (b) the dynamic

constraints monitoring, which can be used to validate (b1) the

correct coupling of the data and control flow as well as (b2)

the runtime behavior of an application.

B. Coverage Measurements

As discussed in detail by the Certification Authorities Soft-

ware Team (CAST) [12], measuring the structural coverage on

the object code level provides different information than the

measurement on the source code level. By evaluating the debug

information generated by the compiler, the measured object

code coverage can be backannotated to provide a source code

level view on the obtained coverage data.

The corresponding overall workflow is illustrated in Fig. 1.

The target device under test (DuT) is a microprocessor execut-

ing regularly compiled, native code. This execution is moni-

tored via the platform-specific trace port. The CEDARtools®

hardware platform decompresses this trace on the fly, re-

constructs the application control flow in real time and logs

sufficient execution data for a conclusive labeling of the

application’s control flow graph with respect to the desired

coverage criteria. The bulk of this data comprises branch

execution counters. Depending on the particular architecture

and execution environments, statistics about other control-flow-

changing events, such as timer interrupts or task switches, may

have to be included for a consistent final picture. Observe that

this object code coverage can be measured plainly on the basis

of the executed binary. The presentation of the obtained results

can be refined by the backannotation to the application sources

as long as these sources are available and the compiler has

produced debug information along with the executable.

Fig. 2 depicts an example of such an annotated HTML

coverage report. It shows the C source code lines, which

can be optionally expanded into their corresponding assembly

statements. Each line is prefixed by its observed execution

count. For branches, this count is differentiated into the number

of sequential continuations and the number of taken control

flow changes. The latter appears behind an arrow symbol and

is, in fact, the only figure in the case of unconditional branches

and function calls. Conditional branches are further annotated

by a plus-minus pair indicating whether they have ever been

observed being taken and not taken during the test. In order to

improve the visual perception, failures to meet coverage criteria

are color-coded.

Additionally, a (typically partial) control flow graph anno-

tated with the measured coverage data may be produced to

understand the structure of a test. An example is depicted in

Fig. 3. Implied sequential control flow is largely pruned. It

is, however, identified as blue edges from conditional branch
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Fig. 2. Coverage Data Backannotated into Source-Code View

nodes and other code points that have happened to be branch

destinations. Branching control flows, on the other hand, are

depicted in green.

The implemented coverage measurement is capable of live

consistent data snapshots in the middle of executing tests.

Hence, also the coverage progress across a test can be moni-

tored as a meta metric. The node highlighted in the graph of

Fig. 3 is the point of the execution observed by the depicted

snapshot. This can be easily verified by comparing the total in-

and out-degrees of the edges terminating in this node.

Due to the non-intrusive continuous measurement, this ap-

proach can be used to conveniently measure the code coverage

during integration and system tests. This allows an exact

statement about the completeness of these tests. In addition,

the effort for the development and documentation of structural

tests on the module test level can be reduced significantly if the

test coverage for the corresponding code segments is already

proven on a higher test level.

Measuring the coverage directly on the deployed and exe-

cuted object code has numerous benefits with respect to the

confidence in the validity of the derived quality claims. Most

of all, the compiler is removed from the coverage interpretation

as it is now based on the control flow produced by the compiler

rather than on the control of the source code provided to the

compiler. Secondly, not relying on software instrumentation

eliminates its inherent dilemma of either (a) bearing the cost of

added instrumentation code in its productive deployment or (b)

deploying a more efficient, uninstrumented but hence altered

code base in the field. Both of these options are undesirable.

The engineering choice is made on the bases of assumed

criticality. Trace-based coverage certification removes the need

for this trade-off between cost and safety altogether.

Beyond these hard safety-related benefits, many aspects of

engineering a system are simplified. As the coverage-based
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Fig. 3. (Partial) Control Flow Graph Annotated with Coverage Data

test qualification is working on object rather than source, it

is agnostic to the choice of source code language. The cost

of migrating between programming languages or even using

different ones within one project is greatly reduced. Language

choices are no longer dictated by legacy but can be made

flexibly selecting the best fit for each individual given task.

The trace-based coverage measurement allows shifting much

weight away from module up to integration and system tests

as it scales painlessly. It, thus, allows to deliver the coverage-

based test qualification on the level of or close to the original

system requirements specification. The effort to derive and

validate decomposed lower-level test specifications is reduced

to corner cases that cannot be triggered on a higher integration

level. More importantly, the comprehensive high-level coverage

measurement provides an immediate feedback to the quality

of the tests on the respective test level. It reveals incomplete

requirements specifications and incomplete functional tests. A

strong incentive to enhance the high-level tests is created as it

allows to avoid walking down and up the underlying hierarchy

levels.

The main drawback of working on the object-code level

is that the traceability of results back to the source code

may be difficult. This, at least, requires the used compiler to

emit debug information along with the generated object code.

Difficulties in the result interpretation may be introduced by

aggressive compiler optimizations, which may make it harder

to understand why a coverage criterion is missed at a certain

point of the test. Closely related to this issue is also our ongoing

work on the reliable tracking of the individual flags contribution

to a multi-condition.
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in read_brake_sensor : Events[Unit] 
in activate_brakes   : Events[Unit]  

def latency : Events[Int] := calc_latency(stimulus = read_brake_sensor,  
                                  response = activate_brakes)  

# Check if event chain took less than 5ms (3.333.333 CPU cycles) 
def test_passed : Events[Bool] := if (latency < 3333333) then true else false  

out latency 
out test_passed  

# domain specific library 
def calc_latency[A,B](stimulus: Events[A], response: Events[B]) 
    := { return time(response) - last(time(stimulus), response)}

void run_task() 
{ 
  float brake_angle = read_brake_sensor(); 
  
  int strength; 
  strength = calculate_brake_strengh_for_angle(brake_angle);  

  int motor_control; 
  motor_control = calculate_motor_control_value(strength);  

  if (motor_control == 1) { 
    activate_brakes(); 
  } 
  else if (motor_control == -1) {  
    release_brakes(); 
  } 
}

Hundreds of high-level specifica�ons  
can be monitored in parallel

Source code TeSSLa specifica�on

Fig. 4. Overview of the Runtime Verification Flow

C. Runtime Verification

Runtime verification is another use case of the online exe-

cution trace analysis. It establishes a powerful tool for testing

and troubleshooting complex systems. During the continuous

reconstruction of the control flow, it is possible to mark certain

instruction addresses. When these instructions are executed,

elements are inserted into the emitted event stream, which

can then be examined online for specified temporal properties.

The event processing units used can be configured in the

high-level language TeSSLa [13], [14] and a large number of

temporal properties can be monitored in parallel. The TeSSLa

macro support also enables the easy adoption of industry

standards like the AUTOSAR Timing Extension (TIMEX) [15]

or AMALTHEA [16] to describe temporal behavior.

The CEDARtools® solution leverages event processing units

that execute low-level TeSSLa operators natively. So, they

are merely re-programmed for a given monitoring task. A

time-consuming, application-specific synthesis of FPGA logic

structures is not required. Thus, a change of the high-level

property description can be applied to a trace data stream within

seconds.

The overall workflow of the dynamic runtime verfication

is illustrated in Fig. 4. The physical hardware setup matches

the coverage measurement flow. Only within the FPGA, the

coverage statistics unit is replaced by a programmable event

stream analysis. Its configuration is compiled from a TeSSLa

specification, an additional input to the workflow. It describes

the monitoring task, the properties to compute and outputs to

emit from the consumed control flow events.

V. DESIGNING CUSTOM PLATFORMS FOR TESTABILITY

Responsible project planning must meet certain precautions

to ensure the comprehensive observability for test and debug

purposes. This implies for the architecture of the designated

system platform:

• The trace interface must be accessible. For Intel® proces-

sors, the corresponding USB port should be available; for

other architectures, the access to the corresponding trace

interfaces (mostly Aurora or parallel) must be considered

in the hardware design. Short-sighted cost savings at this

point may tremendously complicate the critical system in-

tegration and debugging and, consequently, even endanger

the success of the project.

• The initialization of the trace interface must be ensured.

This is done either during the startup routine or by external

access to the corresponding control registers (for example,

via JTAG). For both options, the consequences for the
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safety and/or security architecture must be considered

carefully.

• Since many processor architectures only provide a limited

data trace, further observability requirements should be

considered. This may, for example, result in leveraging

hardware-supported instrumentation (e.g. Intel® Processor

Trace [8] PTWrite instructions, NXP QorIQ® [11] Data

Acquisition Messages) or in mapping relevant variables to

designated memory areas that are observable by the data

trace.

VI. CONCLUSIONS

This paper has descibed an innovative approach that exploits

execution trace data for the online monitoring of embedded

processors for the on-the-fly system analysis. As a promising

use case for this capability, the coverage measurement of

long-running integration and system tests has been proposed

and its numerous benefits have been described. The dynamic

verification of runtime properties has been suggested as an-

other possible use case. The requirements for system platform

designs to enable the leveraging of the described benefits have

been given.
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