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Abstract—This paper briefly examines common types and the
nature of failures in complex, embedded multi-core environments.
A novel tool CEDARtools® is presented, overcoming these issues
by processing hardware-generated trace in real-time, providing
complex triggers and variable monitoring scopes, facilitating a
post-mortem analysis. The approach permits preventive moni-
toring even before the program fails and allows mastering the
evolving complexity in embedded development.

Index Terms—economic, multi-core, debugging, complex tran-
sient failures, sporadic failures, hardware trace, trace analysis

I. INTRODUCTION

As the number of features and demands in modern embedded

systems grows, the overall number of code lines in those

projects and their complexity increases. While back in 2010, an

average car had around 10 million source lines of code (SLOC),

this number has multiplied by a factor of 15 to around 150

million SLOC by 2016 [1].

To satisfy the demand for more computational power, multi-

core processors have been gaining more and more interest both

in the automotive and the avionic industries. Although they

allow for more powerful, higher-integrated and cost-effective

implementations, they also increase the level of complexity in

software development and the chances of the occurrence of

complex transient failures, such as data races, deadlocks or

resource starvation. Another more colloquial description may

be sporadic failures that only occur under certain circumstances

that are typically hard to reproduce and comprehend.

Research has shown that software defects are more likely

with an increasing complexity, as shown in Fig. 1. The average

defect potential increases as more functionality – measured

in function points (FP) – is implemented. The source of the

depicted statistics was published in 2011 [2], a time when

multi-core processors were not yet widespread. Thus, the defect

potential of these modern systems must even be assumed to be

worse taking their complexity and concurrent operation into

account.

Avoiding defects is the main goal of the development process

in safety-critical applications where any malfunction could lead
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Fig. 1. Average defect potential by type and size of software projects (Source:
[2])
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Fig. 2. Phases of software development

to costly product recalls or – even worse – serious injuries

involving human life. Achieving this is hard and calls for

conscientious work within all phases of the generic software

development process shown in Fig. 2.
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Fig. 3. Defect removal efficiency by type and size of software projects (Source:
[2])

Despite all efforts, already tested and released software is

likely to remain with defects, which were not detected in earlier

phases during its development. For more complex software

projects, the defect removal efficiency even lowers [2] as

depicted in Fig. 3.

Both effects, the increased probability of defects and the

reduced defect removal efficiency, lead, by trend, to a higher

number of post-release defects as projects become larger. Since

these defects were neither caught during the implementation

nor in the testing phase, they are by nature more complex to

trigger, involving various conditions, or only happen in very

unlikely cases.

An exemplary abstract cause-effect chain is depicted in Fig. 4

showing a defective system. A code defect causes a root

infection in state z2, represented by its internal values and

outputs. However, this might not be visible to the engineer due

to the limited insight into the system provided by its observable

outputs e1 and e2. Even worse, the actual root infection may

be overwritten and masked regularly as in state z5 before it

eventually results in an observable failure in state z6.

The remainder of this paper is structured as follows. In

the next section, Sec. II, a list of requirements is given that a

debugging tool should fulfill to efficiently track down transient

faults. This is followed by a presentation and comparison of

state-of-the-art debugging approaches in Sec. III, examining

their suitability for the class of complex transient failures. In

Sec. IV, a new approach is presented, explaining its working

principles and detailing the differences to other approaches.

Finally, a summary and conclusion are given.

II. MULTI-CORE DEBUGGING REQUIREMENTS

Based on the experiences at Airbus Defence & Space GmbH,

the following requirements for efficient multi-core debug tools

have been derived. [4]
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Fig. 4. A defective program execution as a succession of states (inspired by
[3])

A. Deep system insight

It is favorable to be able to observe infections as soon as

possible. Thus, a deep system insight is required, being able

to notice any unusual behavior and react on that. Deep system

insight means, from an access privilege point of view, that the

observer must be able to see all data the running process may

have access to as well.

B. Non-instrusiveness

A fundamental claim is that a tool does not change the

behavior of the system under test during observation. This is in

line with the behavior of bus tracers (Ethernet, PCI, MILSBUS,

. . . ) that do not interact with the exchanged signals. Non-

intrusiveness is important in order to (a) not shadow any of the



system behavior – often referenced in literature as Heisenbugs

[5] – and (b) not to introduce new distracting infections.

C. Decoupling from software

A decoupling of the observation tool from the developed

software also avoids the need for changes in the code so that the

observation can be conducted on the actual release code. It can,

thus, be seamlessly continued into the maintenance phase even

with changing the observation focus variably without touching

the system under observation. This is especially beneficial

for safety-critical software, which is required to be certified

in a time-consuming process and, hence, cannot be modified

without serious ramifications to time and cost.

D. Long observation period

Issues under observation tend to happen very rarely in time.

Hence, observation should not be restricted to a few seconds

or minutes but should preferably be unlimited in time. This

increases the probability of encountering and detecting the fault

conditions to allow the observation of the sought misbehavior.

It is also a prerequisite to satisfy the next criteria.

E. Multiple focuses

Debugging efficiency can be highly increased by the ability

to analyze multiple independent failures in parallel due to the

low occurrence rate of each single failure. The rationale here is

that certain sporadic failures can only be reproduced on system

integration level, which has the main purpose of performing

formal testing. Dedicating an entire system integration facility

(or perhaps even lower levels) entirely to chasing a sporadic

failure, especially one that is not deemed safety-critical, is not

economic. Therefore, it must be possible to analyze the root

cause of such failures in parallel to normal testing activity.

F. Multi-core support

The tool should be able to debug parallel software running

on multi-core processors with the aim of being able to catch

failures introduced by this architecture.

G. Cost effectiveness

The debugging equipment and process has to be in proportion

with the cost of the bug fixed in order to be applied sustainably

in an industrial environment. In the avionics industry, a fix

for a post-release defect is assumed to induce costs of around

500.000C or even more depending on the project/program [6].

H. Autonomous operation

Once armed, the tool should be as autonomous as possible

so that it can be used for long test runs in the real system

environment where physical access might not be possible.

I. Adaptability

The tool should be rapidly adaptable in terms of the obser-

vation focus. Complex failures have the tendency to require

several iterations of reproducing them before the root cause is

understood. This may involve experimentation with hypotheses

that can be verified or falsified. Continuously narrowing down

the area, in which the root cause might be located, requires

constant changes to the observation focus. The overall debug

time can be reduced the faster and easier the tool can be adapted

to a new focus.

III. STATE OF THE ART

printf() Debugging: Named after the printf() C

function, this is the most basic form of debugging limited to

writing debug information to a console output, such as RS232,

by explicitly instrumenting the source code.

This approach can have massive impacts on timing for a

single core and may introduce undesired synchronization in par-

allel programs when sharing the same output console. Besides,

it is the least dynamic form for obtaining an understanding

of what is happening inside a program. If the information

of interest changes, the software must be changed and thus

recompiled most of the time. With many iterations, this process

can become very tedious and time-consuming. In the worst-

case, this may threaten project goals if no other method is

available. Even though this approach is archaic, it is still

sometimes used, especially if no more advanced debug method

is available.

Start/Stop Debugging: This very common debugging ap-

proach is based on the direct control of the program execution.

One may break the execution at a certain point in time and

analyze the current state.

However, the approach has some major drawbacks, when it

comes to debugging complex transient failures:

1) The high interference with the program execution by

directly controlling the execution progress changes the

time behavior. This makes it hard to reproduce failures

where timing matters. Besides, in cyber-physical systems

where the software controls physical actuators, such as

an engine, this approach might not even be applicable

since halting the execution would cause physical damage

to the engine.

2) It typically only allows stepping forward. Breakpoints

have to be chosen thoughtfully to be early enough to

reflect the root cause of the observed failure. This typi-

cally leads to a need of rerunning the software over and

over again in an effort to trace back the manifestation of

a failure.

3) Due to the cyclic debugging fashion, the system behavior

is required to be fundamentally deterministic to enable

the observation and investigation of a failure. This is

hard or impossible to achieve in parallel or in real-time

programs with dynamic asynchronous input data.

www.embedded-world.eu
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Fig. 5. Comparison of (a) printf() (b) start/stop and (c) omniscient
debugging approaches for exemplary program execution in Fig. 4

Omniscient Debuggers: These debuggers, also known as

back-in-time or reversible debuggers, record the whole or parts

of the program execution for reconstructing the execution

history and corresponding program contexts. This allows the

engineer going back in time, which conforms to the natural

way of searching causes of observed failures. The records may

be generated by code instrumentation or by using hardware

trace data, generated by dedicated on-chip debug modules [7],

[8].

For illustration purposes, we apply the presented approaches

to the example shown in Fig. 4. As shown in Fig. 5, printf()-

debugging partially unveils the internal variables for various

states. In comparison, the start/stop debugging and omniscient

debugging approaches provide full insight of the systems state

at the time of inspection. Through the ability of the latter

approach to go back in time once a trigger condition has been

hit, the cause effect chain can be efficiently studied without

having to rerun the program, which is especially beneficial for

sporadic, hard-to-reproduce failures.

Additionally, both former approaches suffer from the fact
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Fig. 6. Components of the CEDARtools® hardware connected to the DuT

that they are highly intrusive whether through direct source

code modifications or execution control.

Only omniscient debuggers relying on hardware trace in-

formation can greatly avoid an interfere with the program

execution. However, the hardware trace is an extremely high-

bandwidth data source encoding the program control flow, ex-

ecution context information and, potentially, data trace values.

They easily add up to several hundreds of megabytes per second

[9]. In practice, the available memory space limits the feasible

recording times and, hence, inspection periods of this approach.

This limitation makes it hard to use in production and leaves

space for new approaches.

IV. REAL-TIME HARDWARE-BASED TRACE ANALYSIS

The CEDARtools® system is based on a live synchronized

digital twin representing the relevant activities within the De-

vice under Test (DuT). A basic block diagram is shown in

Fig. 6. For the interested reader, a more detailed insight is given

in Fig. 8, illustrating the whole debugging process using a brief

code example.

The synchronization is based on hardware trace data as

provided by almost all embedded processor architectures. Many

processor vendors facilitate their products with dedicated trace

modules providing data about the programs execution without

interfering with the execution. Examples are ARM CoreSight™

[10], Intel® Processor Trace [11], Infineon ED [12] and NEXUS

(NXP QorIQ®) [13]. The data provided typically comprise

control flow information and memory accesses including data

for multiple cores. This facilitates a very deep insight into the

system.

The trace is filtered and analyzed on-the-fly during execution

as it is received. It allows detecting infections as soon as

possible during run time by using the filtered events to derive

complex triggers. In parallel, various history buffers of the raw

trace data as well as the filtered event streams are recorded. The

triggers allow freezing these buffers for a later analysis. The

digital twin and the processing engines are implemented on a

high-performance FPGA in the form of special-purpose control

flow reconstruction units and event processing units, which are

optimized for high-throughput data-flow event processing.

All of the event processing, especially the computation of

complex triggers – the key feature for the detection of infections

– can be described in the high-level language TeSSLa [14].
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Fig. 7. Observation of execution steps using live hardware trace analysis

This is a temporal stream-based specification language designed

for specifying and analyzing the behavior of cyber-physical

systems (see http://tessla.io). It acts on the basis of events

derived from the raw hardware trace, such as:

• executed instructions,

• function calls,

• task switches, and

• accesses to global variables.

Examples for specifications are checks for invalid program

sequences, data range checks, exceeded task timings, response

time checks, and others. A fundamental principle of the

CEDARtools® workflow is to keep the declaration of such

specifications simple so as to make the tool accessible for test

engineers of different skill levels. Therefore, TeSSLa supports

the implementation of functions to encapsulate more complex

logic, and the ability to import existing timing constraint

specifications, e.g. from the AUTOSAR™ TIMEX [15] or

AMALTHEA [16] formats. In summary, the tool supports a

large number of various complex triggers, the combination

of synchronized traces from multiple cores and the ability to

observe them for an arbitrary amount of time. Moreover, the

CEDARtools® hardware has been designed to combine and

process trace data from multi-processor systems, but which is

out of the scope of this paper.

Coming back to the execution of our example program: Us-

ing the proposed approach, a verification of multiple execution

steps can be done live at run time for a long observation period

as illustrated in Fig. 7. Once armed, it can run autonomously

during the tests. The history buffers are frozen on any mis-

behavior. They can be read after the debug run serving as a

basis for further investigation. In order to narrow down the

root cause of the observed failure, the observation focus can be

easily changed by reconfiguring the system with a new TeSSLa

specification.

The shown approach can be seen as a mitigation of the

limitations that common omniscient debuggers suffer in terms

of observation time. This greatly increases the observability of

the DuT and also provides complex triggers to enable a faster

successful capture of traces containing the relevant information

of root infections.

V. SUMMARY AND CONCLUSIONS

The rising complexity of software projects leveraging multi-

core processors requires new debugging methods in accordance

with the ones presented in this paper. Due to its nature

and the fulfillment of the stated requirements, the proposed

CEDARtools® workflow particularly enables the tackling of

complex transient failures in integrated multi-core systems in

a new fashion.

Reducing post-release defects, of course, requires the full

toolbox of debugging tools and methodology to reduce different

types of malfunctions. Therefore, it is highly recommendable

to plan early for mastering later-evolving software issues. For

hardware trace based tools, the processors capability to produce

hardware trace as well as access to the physical trace interface

are the key factors. These requirements have to be considered

during early project planning phase in order to deliver high-

quality safety-critical systems.
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in read_brake_sensor : Events[Unit]
in activate_brakes   : Events[Unit]

def latency : Events[Int] := calc_latency(stimulus = read_brake_sensor, 
                                          response = activate_brakes)

# Check if event chain took less than 5ms (3.333.333 CPU cycles)
def err_found : Events[Bool] := if (latency > 3333333) then true else false

out latency
out err_found

# domain specific library
def calc_latency[A,B](stimulus: Events[A], response: Events[B]) 
    := { return time(response) - last(time(stimulus), response)}

in read_brake_sensor : Events[Unit]
in activate_brakes   : Events[Unit]

def latency : Events[Int] := calc_latency(stimulus = read_brake_sensor, 
                                          response = activate_brakes)

# Check if event chain took less than 5ms (3.333.333 CPU cycles)
def err_found : Events[Bool] := if (latency > 3333333) then true else false

out latency
out err_found

# domain specific library
def calc_latency[A,B](stimulus: Events[A], response: Events[B]) 
    := { return time(response) - last(time(stimulus), response)}

void run_task()
{
  float brake_angle = read_brake_sensor();
  
  int strength;
  strength = calculate_brake_strengh_for_angle(brake_angle);

  int motor_control;
  // sporadic problem:
  // function rises sometimes a timing constraint  
  motor_control = calculate_motor_control_value(strength);

  if (motor_control == 1) {
    activate_brakes();
  }
  else if (motor_control == -1) { 
    release_brakes();
  }
}

void run_task()
{
  float brake_angle = read_brake_sensor();
  
  int strength;
  strength = calculate_brake_strengh_for_angle(brake_angle);

  int motor_control;
  // sporadic problem:
  // function rises sometimes a timing constraint  
  motor_control = calculate_motor_control_value(strength);

  if (motor_control == 1) {
    activate_brakes();
  }
  else if (motor_control == -1) { 
    release_brakes();
  }
}

Hundreds of high-level specifications 

can be monitored in parallel

Raw Trace History Buffer

Events History Buffer Freeze

Freeze

F
ig

.
8

.
C

E
D

A
R

to
o

ls
®

d
eb

u
g

g
in

g
ap

p
ro

ach
o

n
an

ex
em

p
lary

C
-P

ro
g

ram
illu

stratin
g

th
e

in
v
o

lv
ed

co
m

p
o

n
en

ts
o

n
so

ftw
are

an
d

h
ard

w
are

sid
e


	Introduction
	Multi-core Debugging Requirements
	Deep system insight
	Non-instrusiveness
	Decoupling from software
	Long observation period
	Multiple focuses
	Multi-core support
	Cost effectiveness
	Autonomous operation
	Adaptability

	State of the Art
	Real-time Hardware-based Trace Analysis
	Summary and Conclusions
	References

