
 

  

Understanding and Fixing Complex Faults  
in Embedded Systems 
 

WHITEPAPER  

Rev. 1.0 / 28 AUGUST 2020 

 

This whitepaper briefly examines common types and the nature of software anomalies. It explains 

how mistakes lead to observable anomalies and how these are differentiated into Bohrbugs and 

Mandelbugs according to their reproducibility. The principle of "scientific debugging" is 

explained. It is shown that the comprehensive observability of a system is a key capability for 

efficient debugging. Subsequently, the advantages and limitations of various existing and novel 

monitoring solutions such as printf()-debugging, start/stop-debugging, omniscient debugging, 

runtime verification and the novel CEDARtools® approach are presented and discussed. 

 

  

ra
ig

vi
/S

h
u

tt
er

st
o

ck
.c

o
m

/ 



Copyright © 2020, Accemic Technologies GmbH  Page 2 of 10 
https://accemic.com/  

Something about Mistakes, Errors, Defects, Bugs, Faults and Anomalies 
In everyday language (and in many publications), we use a number of words such as bug, fault, error, etc. 

inconsistently and confusingly to describe the malfunctioning of a software-based system. This also 

happens to the authors of this paper in their normal life unless they pay strict attention to their choice of 

words. 

Therefore, we would like to start with a brief clarification. The IEEE have done a great job for this. The 

following terminology is based on the "IEEE Standard Classification for Software Anomalies" [1]. 

The source of all our problems is human imperfection. Everyone makes mistakes, even the most brilliant 

developer. If developers notice a mistake (or misunderstanding) themselves, it is called an error1.  

If the tester is the first to notice the anomaly, it is called a defect2. After confirmation by the developer, it 

becomes a bug. 

Once the product is deployed and the end user is the first to find the system not working as expected, we 

have a fault3. 

The term “anomaly” may be used to refer to errors, defects, bugs as well as faults. 

AnomalyRoles

ErrorDeveloper

Mistake,
Misunderstanding

Tester

Customer

Defect Bug

Fault

d
e

v
ia

ti
o

n
 

fr
o

m
 t

h
e

 e
x

p
e

ct
e

d
 b

e
h

av
io

r 
id

en
ti

fie
d 

by

is
 c

al
le

d

accepted by the developer

 

Figure 1: Semantics of Mistakes, Errors, Defects, Bugs, Faults, Anomalies etc. 

Reproducibility of Anomalies 
For the engineer’s ability to eliminate a bug or a fault (= debugging), the reproducibility of the anomaly is 

crucial. Therefore, this property is an essential classification criterion for anomalies. 

A deterministic manifestation is the repeatable occurrence of an anomaly under a well-defined, but 

possibly unknown, set of conditions. Such a manifestation is also called a Bohrbug4 (named after Bohr’s 

deterministic atom model).  

 
1 Error: A human action that produces an incorrect result. [1] 
2 Defect: An imperfection or deficiency in a work product where that work product does not meet its requirements or 
specifications and needs to be either repaired or replaced. [1] 
3 Fault: A manifestation of an error in software. [1] 
4 Note: The term "bug" is not in line with the terminology introduced above. In order to be consistent with the established 
terminology used in related work, we will also use the terms “Bohrbug”, “Mandelbug” etc. instead of the more consequential 
terms “Bohr anomaly", “Mandel anomaly" etc. 

https://accemic.com/


Copyright © 2020, Accemic Technologies GmbH  Page 3 of 10 
https://accemic.com/  

If the underlying causes for an anomaly are so complex and obscure that it appears to be non-

deterministic, we also speak of a Mandelbug (named after the chaotic Mandelbrot set). An example of a 

Mandelbug is the well-documented “unintended acceleration problem” [2]. 

The literature defines some subclasses of Mandelbugs: 

• Aging-Related Bugs occur in long-running systems due to error conditions caused by the 

accumulation of problems such as memory leakage, propagating rounding errors or unreleased 

files and locks. A typical example for an aging-related bug is the software fault in the Patriot  

missile-defense system [3] .  

• Anomalies that seem to disappear or alter their behavior when looked into are called Heisenbugs 

(named after the uncertainty principle described by the physicist Werner Heisenberg, which is 

often informally conflated with the probe effect). 

It seems that the predominant class of faults should be complex Mandelbugs. Surprisingly, this is not the 

case: In practice, there is a surprisingly high proportion of Bohrbugs. An impressive example is given by 

Grottke et al. [4] who analyzed the software faults for 18 JPL/NASA space missions. Out of the detected 

520 software faults, 61.4% were Bohrbugs, and 36.5% were Mandelbugs (4.4% of those were aging-related 

bugs). 

Nonetheless, the complex Mandelbugs increasingly gain importance as more and more complex systems 

are being developed and non-deterministic fault patterns will occur more frequently due to parallelism 

and concurrency in multicore systems. 

  

https://accemic.com/


Copyright © 2020, Accemic Technologies GmbH  Page 4 of 10 
https://accemic.com/  

The Anatomy of an Anomality 
An illustration of the effects of a mistake is shown in Figure 2.  
Our example system traverses through a sequence of states, z1.. z6, which are characterized by the 
internal variables, i1 .. i4, and the observable outputs, e1 .. e2. Each program execution step computes an 
update to the internal variables and the outputs to produce. 
If the executed program contains a mistake, the resulting state might not be as expected. In this case, we 
speak of an "activated mistake" and a resulting "infected state" – an anomaly has manifested. 
 

Observable 
outputs

Internal variables

Masking 
of the infection

o

o o

Ex
ec

u
ti

o
n

 s
te

p
s 

/ 
ti

m
e

o

o o

oo

oo  

oo

oo

 

 

o o o

o

o

o

o

Observable 
anomaly #2

o

o

o

o

z1

z2

 o

 

o

z3

z4

z5

z6

i1 i2 i3 i4 e1 e2

Overwritten 
infection

Propagation

o

!

o  Correct 
state

Wrong 
state ! Wrong state,

observable

Infected state

 

z1

z2

z3

z4

z5

z6

o

 

!

o

 

o

o

i1 i2 i3 i4 e1 e2

!

Observable 
anomaly #1

Mistake activation

Code A with a mistake

!

Code B with a mistake

correct processing step

incorrect processing step 
(mistake acitivation)

 
Figure 2: A defective program execution as a succession of states (inspired by [4]).  

Left-hand-side: extended depiction of states and transitions.   
Right-hand-side: simplified depiction of the same scenario 

By the transition from state z1 to z2, two code segments with mistakes are executed. One of them (code A) 

causes a wrong state of the internal variable i3, the other (code B) causes a wrong state of the observable 

output e2. The latter is a textbook-like manifestation of a Bohrbug as long as the anomaly can be 

reproduced under a well-defined, but possibly unknown, set of conditions. 

A typical Mandelbug scenario (caused by code A) is a malfunction that only changes an internal variable 

(i1 .. i4). This may not be detectable easily. Worse, the actual root infection can be regularly overwritten 

and masked, such as in state z5, before it finally leads to an observable failure in state z6. The path of 

propagating and overwriting infections can cause many headaches. In our example, when switching to 

https://accemic.com/


Copyright © 2020, Accemic Technologies GmbH  Page 5 of 10 
https://accemic.com/  

state z4, the wrong internal variable i3 causes a wrong assignment of i2. When i3 is overwritten in z5, the 

track record of this originally wrong variable is lost before the error is exposed in z6. By this time, no 

indication remains to point to the software defect in switching from z1 to z2.  

If the transitions are processed in a multicore system, there is an increased chance for a more chaotic 

manifestation of the resulting anomaly.  

To avoid this nightmare scenario, comprehensive monitoring capabilities are essential. 

 

The Debugging Process 
The process of understanding the underlying cause of an anomaly, i.e. the identification of the mistake, 

and fixing the problem is called debugging. Often carried out intuitively, this process always follows the 

same procedure depicted in Figure 3. 

Observed anomaly

Hypothesis 
for the anomaly cause

Experiment

Observation 
and conclusion

Fix mistake

refine hypothesis create new hypothesis

hypothesis 
is supported

hypothesis 
is rejected

Observabilty 
is the key capability for 

debugging
 

Figure 3: “Scientific” Debug Process 

Starting from an observed anomaly, a testable theory (hypothesis) that narrows the space of possibilities 

for its cause is developed. The next step is to develop an experiment to test the hypothesis.  

If the hypothesis is supported, either the detected mistake can be fixed or the hypothesis can be further 

refined. If the hypothesis was false, a new hypothesis has to be developed. 

It is obvious that observability is a crucial factor for an efficient debugging process. In the following, we 

will discuss the currently used and novel observation methods that are so essential for the debugging 

process.  

https://accemic.com/


Copyright © 2020, Accemic Technologies GmbH  Page 6 of 10 
https://accemic.com/  

The Observation Toolbox 

PRINTF() DEBUGGING (FIGURE 4.A) 
Named after the printf() C function, this is the most basic form of observation in the debugging process. 

The source code is manually instrumented simply to write debug information to a console output. 

Unfortunately, this approach can have a massive impact on the time behavior of an application. It may 

even introduce unintended synchronization in concurrent programs when the same output console is 

shared. This is a perfect setting for Heisenbugs.  

Besides, it is the least dynamic approach for obtaining an understanding of what is happening inside a 

program. If the information of interest changes, the software must be adapted and recompiled. With many 

iterations, this process can become very tedious and time-consuming. Even though this approach is 

archaic, it is still in use. In the worst case, it may threaten project goals if no other more advanced debug 

method is available. 

 

i1 i2 i3 i4 e1 e2

z1

z2

z3

z4

z5

z6

o

 

 t
im

e 

Inspected 
Variable

!

Infection

o

 

o

o

i1 i2 i3 i4 e1 e2

z1

z2

z3

z4

z5

z6

o

 

ti
m

e

Inspected 
state

! Direction of 
inspection

o

 

o

o

z1

z2

z3

z4

z5

z6

o

 

ti
m

e

!

o

 

o

o

i1 i2 i3 i4 e1 e2

Inspection in 
both directions

Inspected 
state

(a)

(b)

(c)

printf(i4)

printf(i2)

printf(i4)

<break>

<trigger>

Correct processing step

Processing step resulting in infection

z1

z2

z3

z4

z5

z6

o

 

ti
m

e 

!

o

 

o

o

i1 i2 i3 i4 e1 e2

Verification of 
execution steps 
during runtime

(d)

 
Figure 4: Todays observation toolbox:  

(a) printf() Debugging, (b) Start/Stop Debugging, (c) Omniscient Debugging, (d) Runtime Verification.  
This illustration follows the representation introduced in Figure 2. 

https://accemic.com/


Copyright © 2020, Accemic Technologies GmbH  Page 7 of 10 
https://accemic.com/  

START /STOP DEBUGGING (FIGURE 4.B) 
This very common observation approach is based on the direct control of the program execution. One may 
break the execution at a certain point in time and analyze the current state. 
However, the approach has some major drawbacks when it comes to analyzing complex transient 
anomalies: 

1) Directly controlling the execution progress of a program changes its timing behavior. This makes it hard 
to reproduce anomalies, for which timing matters. Besides, in cyber-physical systems where the 
software is controlling physical actuators, such as an engine, this approach might not even be applicable 
since halting the execution would cause physical damage. 

2) It typically only allows stepping forward. Breakpoints have to be chosen thoughtfully to be early enough 
to reflect the root cause of the observed anomaly. This typically leads to a need for rerunning the 
software over and over again in an effort to trace back the manifestation of an anomaly. 

3) Due to the cyclic debugging fashion, the system behavior is required to be fundamentally deterministic 
to enable the observation and investigation of an anomaly. This is hard or impossible to achieve in 
parallel or in real-time programs with dynamic asynchronous input data. 
 

OMNISCIENT DEBUGGING (FIGURE 4.C) 
These debuggers, also known as back-in-time or reversible debuggers, record the whole or parts of the 
program execution for reconstructing the execution history and corresponding program contexts. This 
allows the engineer to go back in time, which conforms to the natural way of searching the causes of 
observed anomalies. The recordings may be generated by code instrumentation or by using hardware 
trace data. The latter is generated by dedicated on-chip debug modules, e.g. Arm® CoreSight™ [5] or Intel® 
Processor Trace [6]. This trace recording can be controlled by a few simple triggers, which are usually not 
suitable for describing really complex conditions. 
Omniscient debuggers without any limitations are an unreachable dream. In reality, there is not enough 
memory to store all the state required to inspect all system states retrospectively for any length of time. 
For embedded processors, there are systems available with a few Gigabytes of trace buffer. This results in 
a clip of a few seconds. If the anomaly occurs outside of it, it is bad luck. 
 

RUNTIME VERIFICATION (FIGURE 4.D) 
Another strategy to immediately detect infected states is the runtime verification approach. Information 
from a running system is extracted and used to validate the system behavior and to detect the violation 
of pre-defined properties. If the transition from one state to another violates such a property, this violation 
is detected immediately. Precondition for this dynamic monitoring principle is the ability to observe the 
related state transitions. Usually, this is done by software instrumentation with its known limitations.   
In summary, it can be said that none of the methods discussed above allows to find non-deterministically 
occurring anomalies reliably.  
 
Fortunately, there is a bright spot: In the CEDARtools® solution, we combine the advantages of the 
Omniscient Debugger and the Runtime Verification approach (see Table 1).  
Using a digital twin representation of the relevant behavior of the system-under-test, its state transitions 
are permanently monitored. In case of a violation / trigger, a ring buffer of raw trace data or a refined 
event stream is frozen -the clip exactly around the violation is thus available ("save on trigger”, Figure 5). 
  

https://accemic.com/


Copyright © 2020, Accemic Technologies GmbH  Page 8 of 10 
https://accemic.com/  

z1

z2

z3

z4

z5

z6

o

 

ti
m

e

!

o

 

o

o

i1 i2 i3 i4 e1 e2

Inspection in 
both directions

<trigger>

z1

z2

z3

z4

z5

z6

o

 

ti
m

e 
!

o

 

o

o

i1 i2 i3 i4 e1 e2

Violated property
leads to the freezing of the 

trace/event stream 
recording

 
Figure 5: The CEDARtools® approach, combing the best of the Omniscient Debugger and the Runtime Verification approach 

An in-detail explanation of the CEDARtools® solution and its technical background is available at 
https://accemic.com/cedartools/. 
 

 

p
ri

n
tf

()
 D

eb
u

gg
in

g 
 

(F
ig

u
re

 4
.a

) 

St
ar

t/
St

o
p

 D
eb

u
gg

in
g 

 

(F
ig

u
re

 4
.b

) 

R
u

n
ti

m
e 

V
er

if
ic

at
io

n
 

(l
iv

e
, w

it
h

 s
o

ft
w

ar
e 

in
st

ru
m

en
ta

ti
o

n
) 

(F
ig

u
re

 4
.d

) 

O
m

n
is

ci
en

t 
D

eb
u

gg
in

g 

(e
m

b
ed

d
ed

 t
ra

ce
 

b
as

ed
, F

ig
u

re
 4

.c
) 

 
(F

ig
u

re
 4

.c
) 

 

Non-instrusiveness  
(No change of the behavior of the system under test) 

No Yes 

Decoupling from software  
(No software instrumentation) 

No Yes No Yes 

Long observation period 
(Observation period should not be restricted) 

Limited n.a. Yes No Yes 

Multiple focuses 
(Analyze multiple independent failures in parallel) 

Yes No Yes 

Multi-core support  
(Tool should be able to debug parallel software running on 
multi-core processors) 

Limited Yes 

Autonomous operation 
(Once armed, the tool should be as autonomous as possible 
so that it can be used for long test runs in the real system 
environment where physical access might not be possible) 

Yes No Yes No Yes 

Bandwidth 
(Monitorable events / s) 

some 
1000 

some 
0.01 

some 1000 > 100 Mio 

Table 1: Comparison of debug techniques (green: good,  n.a.: not applicable). 
A further discussion of the comparison meanings can be found in Schulz et al. [7] 

https://accemic.com/
https://accemic.com/cedartools/


Copyright © 2020, Accemic Technologies GmbH  Page 9 of 10 
https://accemic.com/  

References 
[1] ‘IEEE Standard Classification for Software Anomalies’, IEEE Std 1044-2009 (Revision of IEEE Std 1044-1993), pp. 1–23, 2010. 
[2] M. Barr, ‘BOOKOUT V. TOYOTA - 2005 Camry L4 Software Analysis’, 2013. 

http://www.safetyresearch.net/Library/BarrSlides_FINAL_SCRUBBED.pdf (accessed Jul. 02, 2014). 
[3] ‘Patriot Missile Defense: Software Problem Led to System Failure at Dhahran, Saudi Arabia’, Washington, D.C., Feb. 1992, 

[Online]. Available: https://www.gao.gov/products/IMTEC-92-26. 
[4] M. Grottke, A. P. Nikora, and K. S. Trivedi, ‘An empirical investigation of fault types in space mission system software’, in 

Dependable Systems and Networks (DSN), 2010 IEEE/IFIP International Conference on, 2010, pp. 447–456, doi: 
10.1109/DSN.2010.5544284. 

[5] CoreSightTM Components - Technical Reference Manual - DDI 0314H. ARM Limited, 2009. 
[6] Intel® 64 and IA-32 Architectures Software Developer’s Manual. Intel Corporation, 2016. 
[7] A. Schulz, F. Muenz, and Weiss, Alexander, ‘Debugging Complex Failures of Real-Time Multi-Core Systems’, presented at 

the Embedded World Conference, Nuremberg, Germany, Feb. 2020, [Online]. Available: 
https://accemic.com/publications/. 

[8] A. Zeller, Why Programs Fail: A Guide to Systematic Debugging. Morgan Kaufmann, 2009. 

 
  

https://accemic.com/


Copyright © 2020, Accemic Technologies GmbH  Page 10 of 10 
https://accemic.com/  

About Accemic Technologies 
Accemic Technologies, a German company with offices in Kiefersfelden (Munich Metropolitan Region) and 

Dresden (one of the most beautiful cities in the world), has developed CEDARtools® – a patented 

breakthrough technology for the dynamic analysis of dependable embedded systems. 

We make software tests for embedded systems more effective and efficient. We simplify the debugging 

process and provide the necessary leverage to pin down the root causes of sporadic, non-deterministic 

anomalies. 

Our new analysis method leverages the trace capabilities embedded into virtually all modern processors. 

Their trace units expose the details of the operation of the CPU and its peripherals to the outside. However, 

they easily produce a few GBit of trace data per second. This quickly renders approaches combining 

storage and offline analysis as infeasible options.  

The live analysis of the execution trace at run time is a quantum leap enhancement over the offline analysis 

of recorded trace data as it effectively eliminates the bottlenecks imposed by the need for the 

intermediate buffering. CEDARtools® enables (a) the measurement of the control flow coverage during 

the execution of integration tests and system tests, as well as (b) the dynamic constraints monitoring. 

We provide development and test engineers with the powerful tool that boosts their productivity by 

enabling them to monitor a system over large time frames and to pin down even sporadic errors quickly. 

Talk to one of our experts today. 

 

 

 

 

Accemic Technologies GmbH 

Franz-Huber-Str. 39 

83088 Kiefersfelden 

Germany 

+49 8033 6039790 

cedartools@accemic.com 

www.accemic.com 

 

 

 

All rights reserved. Accemic Technologies and CEDARtools® are trademarks or registered trademarks of Accemic Technologies. All 

other products, services, and companies are trademarks, registered trademarks, or servicemarks of their respective holders in the 

US and/or other countries.  

https://accemic.com/
https://accemic.com/cedartools/
https://accemic.com/contacts/
mailto:cedartools@accemic.com
https://accemic.com/

