

Understanding Embedded Trace

WHITEPAPER

Rev. 1.0 / SEP 2020

Embedded Trace is an integral part of nearly all modern processors. This whitepaper summarizes

the essential facts about this powerful but still far too seldom used functional unit that

application engineers, test engineers and project managers should know in order to test,

optimize and debug a system efficiently.

This paper briefly discusses the problems associated with software-based instrumentation and

how non-intrusive electronic probing was defeated by advancing computer architecture and

system integration. We then identify embedded trace as the solution to this observability

conundrum laying out the techniques that enable efficient and economically reasonable

implementations for this innovative technology. We describe the challenges in bandwidth and

volume that are faced by hopeful observers and backend applications highlighting the benefits of

modern innovative online analysis capabilities. Finally, we provide a short overview over common

physical trace interfaces and simple guidelines that ensure that your next system design is capable

of leveraging this cutting-edge technology.

ra
ig

vi
/S

h
u

tt
er

st
o

ck
.c

o
m

/

Copyright © 2020, Accemic Technologies GmbH Page 2 of 11
https://accemic.com/

Something about Embedded Processor Observation
Monitoring embedded processors can be a difficult task. However, it is essential both during the

development process and during deployment:

• Functional Testing: e.g., measure and validate timing behavior;

• Structural Testing: e.g., measure code coverage or data and control flow coupling;

• Debugging: pin down the root cause of anomalies.

Software Instrumentation
One obvious method of observation, which has been in use for a long time, is software instrumentation.

The application software is modified to produce the desired information, such as control flow indicators,

via standard output channels. Unfortunately, this approach can have a massive impact on the timing

behavior and the memory footprint of an application.

In the field of embedded systems, this method has serious disadvantages, including:

• Due to the changed timing behavior, the significance of functional tests is very limited.

• Unintended phantom synchronization may be introduced to concurrent programs by the access

arbitration to shared output channels.

• Safety-critical software already deployed in the field cannot simply be modified to produce debug

information as this would risk functional degradation or the triggering of Heisenbugs1.

• The common mitigation of observability constraints by first performing transparent coverage

validation tests with software instrumentation before repeating them without software

instrumentation leads to a doubled test effort. This is a major disadvantage, especially, when

limited and expensive test resources, such as HIL test benches, are involved.

Even though the software instrumentation approach is archaic, it is still widely used.

The Embedded Trace presented on the next pages often also offers functions for hardware-supported

software instrumentation. These will be presented in detail in one of our following whitepapers.

1 Anomalies that seem to disappear or alter their behavior when looked into are called Heisenbugs (named after the uncertainty principle

described by the physicist Werner Heisenberg, which is often informally conflated with the probe effect).

ra
ig

vi
/S

h
u

tt
er

st
o

ck
.c

o
m

/

https://accemic.com/

Copyright © 2020, Accemic Technologies GmbH Page 3 of 11
https://accemic.com/

Embedded Trace

MOTIVATION
In the olden days, processors were slow (some 10 MHz) and only had external program memory.

Eavesdropping on the memory bus was sufficient to observe the memory addresses of the instructions

fetched by the CPU for execution. Following the program flow was, thus, rather trivial.

Processor

Peripherals

CPU
instruction memory

(ROM)

data memory
(RAM)

Logic Analyzer
- instruction addresses
- data access
- timing

Figure 1: The olden days - all CPU activity is visible on the external bus.

CPUs have been becoming faster, and their processor architecture has been changing:

• Instructions and data are cached near the CPU. Individual accesses are, therefore, no longer visible

on the external bus system.

• Particularly embedded devices integrate more and more memory (RAM or Flash) internally so as

to achieve faster access times and lower the system cost. Accesses to such memory are not at all

observable on the external bus system.

• To meet the demand for more and more integrated computing power and to reduce energy

consumption, several CPUs are integrated into one processor. Whatever external effects remain

observable now also pose the challenge of attributing them to the correct concurrent control flow

among the ones scheduled across truly parallel cores.

All these advances in processor architecture require a radically new approach to observing what is

happening inside the processor: embedded trace.

external memory
(dynamic RAM)

external memory
(Flash)

Processor

Peripherals

CPU(n)

C
ach

e

instruction memory
(Flash)

data memory
(RAM)

CPU0

C
ach

e

Tr
ac

e
To

ol

em
b.

Tr

ac
e

em
b.

Tr

ac
e

- instruction addresses
- OS events
- [data access]
- [timing]

Trace Protocol

Figure 2: State-of-the-Art: Embedded Trace

https://accemic.com/

Copyright © 2020, Accemic Technologies GmbH Page 4 of 11
https://accemic.com/

Embedded trace is the integration of functional units that make the activity of the CPUs observable.

However, there is a significant bandwidth problem: Monitoring a single CPU comprehensively, at least,

requires information about the executed instructions and the changing CPU registers. For a 32-bit CPU, a

naive encoding would amount to a bandwidth of roughly:

[instruction address] + [changing CPU registers and flags] = 32+ ~48 = ~80 bits / CPU clock cycle

If the CPU is now clocked at 1 GHz, this will imply 80 Gbit/s of trace data. This is far beyond an economically

reasonable solution. So, the trace data stream must be compressed.

PROTOCOL OVERVIEW
Actual trace implementations such as Arm® CoreSight™ Program Flow Trace™ [1], Arm® CoreSight™

Embedded Trace Macrocell ETMv4.x [2], Intel® Processor Trace [3], and Nexus 5001 Forum™ [4] must

compress the transmitted control flow trace rigorously. They inject relevant OS-related information, such

as context switches, into their output to facilitate a highly efficient context-aware compression.

The system observability can be boosted by also tracing the data flow. However, the implied trace data is

much harder to compress. This results in significantly higher bandwidth requirements and, hence, more

costly trace interfaces. Therefore, most implementations actually refrain from implementing this

capability.

Data-Flow MessagesControl-Flow Messages

Synchronization Messages

Branch Messages

Exception Messages

Data Trace Messages

Other Messages

OS related Messages
(e. g. Ownership)

Overflow Messages

User-Defined Messages Timing Messages

Timestamp Message

Figure 3: Most relevant trace message types

In the following, the most relevant trace message types are briefly introduced.

Control-Flow Messages
As already mentioned, the continuous output of the program counter alone would consume significant

trace bandwidth. This is overcome (a) by assuming that the executed application is known to the observer

and (b) by exploiting the default sequential execution of instructions therein. This allows to use the

following strategy for trace data compression:

Synchronization messages are generated in greater intervals, e.g., every 1000 messages. Only they

establish a concrete value of the program counter that identifies the reference point for the further trace

data interpretation. The execution of the sequential code following this point is implied.

Branch messages communicate actual control flow decisions. A single bit indicates whether or not a

conditional branch instruction has been taken to leave the sequential execution path. Branches not taken

imply the sequential continuation of the execution. They do not require any further trace data. Neither do

taken direct branches as their fixed continuation target can be inferred from the executed application

https://accemic.com/

Copyright © 2020, Accemic Technologies GmbH Page 5 of 11
https://accemic.com/

binary. Only taken indirect branches trigger the generation of an alternate message that enables the

observer to reconstruct the dynamically computed branch target address.

Unconditional branches are handled differently by the embedded trace architectures. Some choose to

establish posts in the control flow and produce execution bits just as they do for executed conditional

direct branches (e. g. Arm® CoreSight™ Program Flow Trace™ [1]). Others leave out this clearly implied

control flow from the emitted trace altogether (e. g. Intel® Processor Trace [3]).

Exception messages are generated for externally induced control flow diversions such as by interrupts.

They typically provide a hint on the nature of the exception and contain all information necessary to

resume the control flow reconstruction.

This highly efficient compression results in an average of significantly less than one bit of trace data per

executed instruction.

Timing Messages
Depending on the embedded trace architecture, different message types conveying timing information

may be available. In addition to wall-clock messages, cycle-count messages are of special importance.

They indicate how many CPU clock cycles have elapsed since the last timing update. Observers can typically

choose to receive cycle-count messages with each branch message, in programmable time intervals or not

at all. This way, the significant trace bandwidth consumption by high-frequency cycle-count messages can

be balanced against other desired trace quality properties.

Data-Flow Messages
Data trace is difficult to compress. Depending on the trace architecture, the address of a data access, the

transmitted value and the type of access can be communicated. In a 32-bit system, each access can result

in a trace message of more than 60 bits in length.

Due to its high bandwidth requirements, data trace is not available in all architectures and otherwise

limited regularly. E.g., it may be constrained to designated address regions or to producing partial

information such as the addresses of write accesses only.

Other Messages
There are a number of other trace message types. They establish the trace context as by allowing the OS

to communicate context switches and convey trace-specific information as for signaling internal trace

buffer overflows.

https://accemic.com/

Copyright © 2020, Accemic Technologies GmbH Page 6 of 11
https://accemic.com/

Trace Data Processing

OFFLINE CAPTURE
There are three main options for processing trace data (Figure 4 to Figure 6).

Processor

Peripherals

external memory
(dynamic RAM)

external memory
(Flash)

CPU(n)

C
ach

e

instruction memory
(Flash)

data memory
(RAM)

CPU0

C
ach

e em
b.

Tr

ac
e

e
m

b
.

Tr
ac

e

Figure 4: Buffering trace data within the processor system

Figure 4 shows a solution, which captures the trace data stream in system memory. This solution is often

used in the desktop environment. However, it has a significant impact on system behavior and allows only

short-term observations limited by memory capacity.

To prevent behavioral feedback to the system under observation, trace data can also be captured by an

external trace tool via a designated trace interface. Traditionally, this trace tool is essentially a large

memory buffer that collects the trace data for their later offline processing on a PC (Figure 5).

Processor

Peripherals

external memory
(dynamic RAM)

external memory
(Flash)

CPU(n)

C
ach

e

instruction memory
(Flash)

data memory
(RAM)

CPU0

C
ach

e em
b.

Tr

ac
e

em
b.

Tr

ac
e

Trace Tool PC

Trace Interface

Figure 5: Buffering trace data in trace tool, offline processing in PC

https://accemic.com/

Copyright © 2020, Accemic Technologies GmbH Page 7 of 11
https://accemic.com/

The approach of buffering the trace data (Figure 4 and Figure 5) has two decisive disadvantages:

(1) The observation time is always strictly limited by the buffer size. Depending on the trace

bandwidth, this may allow trace snapshots of a few milliseconds or, at most, seconds. The analyses

of long-running integration and system tests, the statistically significant measurement of worst-

case execution times, or the search for complex non-deterministic errors cannot be scaled to

longer time frames and are, thus, only possible to very a limited extent.

(2) The later offline processing of the recorded trace data leads to a long latency between the

observation and the availability of results. On the one hand, this is an inconvenience for the

engineers involved. On the other hand, this precludes any innovative exploitation of the gained

system observability that would require a prompt reaction.

ONLINE ANALYSIS
Our latest innovations now enable the live processing of processor trace data. A large buffer memory

decoupling the downstream trace processing is no longer necessary (Figure 7).

For their processing on the fly, the highly compressed trace data stream must be decompressed and the

control flow executed by the CPU(s) must be reconstructed. This demanding computation must often cope

with the execution traces from multiple fast CPUs that are running at nominal clock speeds above 1 GHz.

This decoding may be further challenged by additional abstractions and indirections introduced by the

used operating system.

The reconstructed control flow must be analyzed into an apt event stream abstraction that is suitable to

drive the desired of various possible backend tasks. For example, (a) branch information for a coverage

analysis may be recorded or (b) dynamic properties over the event stream may be computed and validated

against a temporal logic specification.

Processor

Peripherals

external memory
(dynamic RAM)

external memory
(Flash)

CPU(n)

C
ache

instruction memory
(Flash)

data memory
(RAM)

CPU0

C
ache em

b.

Tr
ac

e
em

b.

Tr
ac

e

Trace Tool

Trace Interface

Figure 6: Trace data online processing by trace tool

https://accemic.com/

Copyright © 2020, Accemic Technologies GmbH Page 8 of 11
https://accemic.com/

Figure 7: CEDARtools® trace data online processing tool with high-speed serial trace connection to an Infineon AURIX™ processor

A comparison between the embedded trace monitoring techniques is given in Table 1. It is obvious that

the fundamental ability to observe a system for an arbitrarily long timespan, combined with the extremely

short latency of result availability, leads to a new quality of non-intrusive observability of processors.

B
u

ff
er

in
g

tr
ac

e
d

at
a

w
it

h
in

 t
h

e

p
ro

ce
ss

o
r

sy
st

e
m

(F

ig
u

re
 4

)

B
u

ff
er

in
g

tr
ac

e

d
at

a
in

 t
ra

ce
 t

o
o

l,

o
ff

lin
e

p
ro

ce
ss

in
g

in
 P

C
 (

Fi
gu

re
 5

)

 Tr
ac

e
 d

at
a

o
n

lin
e

p
ro

ce
ss

in
g

b
y

tr
ac

e
to

o
l (

Fi
gu

re
 6

)

Intrusiveness High Low Low

Observation period Limited
by buffer size

Limited
by buffer size

Arbitrary long

Latency for accessing
observation results

High High Low

Trigger conditions Limited
complexity

Limited
complexity

Complex
(high-level language support)

Table 1: Comparison of embedded trace techniques (green: good).

https://accemic.com/
https://accemic.com/cedartools/

Copyright © 2020, Accemic Technologies GmbH Page 9 of 11
https://accemic.com/

Physical Trace Interfaces
Trace data can be output either via standard interfaces (e. g. PCIe) or via dedicated interfaces. Several

industry standards for dedicated trace interfaces exist.

 Parallel high-speed serial

Signals clock, strobe, data[] differential TX line(s),
automatic clock recovery

Bandwidth ~ 100 Mbit per data line some Gbit/transceiver pair

Data Link Layer (OSI layer 2) none yes (with CRC)

Example Nexus parallel [4]
MIPI PTI℠ [5]

Nexus Aurora [4]
Arm CoreSight HSSTP [6]
MIPI HTI℠ [7]

Table 2: Comparison of parallel and high-speed serial trace interfaces.
Short conclusion: Prefer the high-speed serial interface whenever possible.

Q&A
Q: Does a JTAG interface on my system provide the trace-like functionality?

A: Unfortunately, not. The bandwidth of JTAG (some 10 Mbps) is orders of magnitude lower than the

bandwidth required for embedded trace output (some Gbps).

Q: Should I really consider that faults still occur after the release of our product - despite the experience

of our developers and extensive testing?

A: The statistics clearly say: YES. Even in a satellite software developed and extensively tested by NASA

engineers, 520 faults were still found after the release [8]. The more code, the disproportionately more

defects are initially present in the software and the worse is the efficiency of error correction. With the

increasing use of multicore and networked multiprocessor systems as well as third party software

components, more and more non-deterministic error patterns, which are difficult to reproduce, are

added. Assuming an error correction ratio of about 95% during the development process (statistic is

based on 12.000 software projects evaluated in [9]), a proud 5% of mistakes remain in the release code -

in absolute numbers, this can mean several thousand defects.

Q: Where can I find support for planning and using Embedded Trace?

A: Our experts at Accemic Technologies are pleased to support you in the planning and concrete

integration of embedded trace. We have close contact to the relevant processor suppliers, access to

comprehensive documentation and a great deal of experience in integration.

We are an email away: cedartools@accemic.com

https://accemic.com/
mailto:cedartools@accemic.com

Copyright © 2020, Accemic Technologies GmbH Page 10 of 11
https://accemic.com/

Summary
Embedded Trace, an integral part of almost all modern processors, is the key component for the non-

intrusive and continuous monitoring of processors, especially in safety-critical embedded systems.

Embedded Trace enables instruction-accurate control flow reconstruction and non-intrusive monitoring

of operating system activity. Optionally, exact timing information in nanoseconds resolution can be

extracted and data accesses can be observed. Therefore, Embedded Trace is crucial for testing,

performance optimization and efficient debugging of embedded systems.

For a responsible project planning, it is essential to ensure the accessibility of the trace interfaces already

during the creation of the requirements specification.

References
[1] ARM IHI 0035B - CoreSightTM Program Flow Trace TM PFTv1.0 and PFTv1.1 Architecture Specification. ARM Limited, 2011.
[2] ARM IHI 0064D - ARM® Embedded Trace Macrocell Architecture Specification ETMv4.0 to ETMv4.2. ARM Limited, 2016.
[3] Intel® 64 and IA-32 Architectures Software Developer’s Manual. Intel Corporation, 2016.
[4] IEEE-ISTO, ‘The Nexus 5001 Forum - Standard for a Global Embedded Processor Debug Interface’, IEEE-ISTO 5001TM-2012,

Jun. 2012.
[5] ‘MIPI PTI v2.0 Specification for Parallel Trace Interface’. MIPI Alliance, Inc., May 03, 2011.
[6] ARM PR106-PRDC-006159 - High Speed Serial Trace Port Architecture Specification. ARM Limited, 2012.
[7] ‘MIPI HTI Specification (High-speed Trace Interface) Specification Version 1.0, Errata 01’. MIPI Alliance, Inc., Feb. 11, 2020.
[8] M. Grottke, A. P. Nikora, and K. S. Trivedi, ‘An empirical investigation of fault types in space mission system software’, in

Dependable Systems and Networks (DSN), 2010 IEEE/IFIP International Conference on, 2010, pp. 447–456, doi:
10.1109/DSN.2010.5544284.

[9] C. Jones and O. Bonsignour, The Economics of Software Quality. Addison-Wesley, 2011.

https://accemic.com/

Copyright © 2020, Accemic Technologies GmbH Page 11 of 11
https://accemic.com/

About Accemic Technologies
Accemic Technologies, a German company with offices in Kiefersfelden (Munich Metropolitan Region) and

Dresden (one of the most beautiful cities in the world), has developed CEDARtools® – a patented

breakthrough technology for the dynamic analysis of dependable embedded systems.

We make software tests for embedded systems more effective and efficient. We simplify the debugging

process and provide the necessary leverage to pin down the root causes of sporadic, non-deterministic

anomalies.

Our new analysis method leverages the trace capabilities embedded into virtually all modern processors.

Their trace units expose the details of the operation of the CPU and its peripherals to the outside. However,

they easily produce a few GBit of trace data per second. This quickly renders approaches combining

storage and offline analysis as infeasible options.

The live analysis of the execution trace at run time is a quantum leap enhancement over the offline analysis

of recorded trace data as it effectively eliminates the bottlenecks imposed by the need for the

intermediate buffering. CEDARtools® enables (a) the measurement of the control flow coverage during

the execution of integration tests and system tests, as well as (b) the dynamic constraints monitoring.

We provide development and test engineers with the powerful tool that boosts their productivity by

enabling them to monitor a system over large time frames and to pin down even sporadic errors quickly.

Talk to one of our experts today.

Accemic Technologies GmbH

Franz-Huber-Str. 39

83088 Kiefersfelden

Germany

+49 8033 6039790

cedartools@accemic.com

www.accemic.com

All rights reserved. Accemic Technologies and CEDARtools® are trademarks or registered trademarks of Accemic Technologies. All

other products, services, and companies are trademarks, registered trademarks, or servicemarks of their respective holders in the

US and/or other countries.

https://accemic.com/
https://accemic.com/cedartools/
https://accemic.com/contacts/
mailto:cedartools@accemic.com
https://accemic.com/

